Noise Impact Analysis Haile Gold Mine Kershaw, South Carolina

Prepared for:

Haile Gold Mine, Inc. 7283 Haile Gold Mine Road Kershaw, SC 29067

Prepared by:

Vibra-Tech Engineers, Inc. 109 E. First Street Hazleton, PA 18201 1-800-233-6181

June 27, 2012

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	2
DISCUSSION OF SOUND LEVEL MEASUREMENTS	2
DB	2
DBA	
Maximum – dBA L _{max}	
EQUIVALENT SOUND LEVEL — L _{FO}	
OCTAVE BAND LEVELS	2
COMBINING SOUND LEVELS	3
STS SOUND DESCRIPTOR DEFINITIONS	3
AMBIENT SOUND LEVEL STUDY	3
SOUND LEVEL PROJECTION ANALYSIS	4
HUMAN PERCEPTION AND IMPACT ASSESSMENT	5
LANCASTER COUNTY NOISE ORDINANCE	
Maximum Permissible Sound Pressure Level	
Summary of Updated Octave Band Sound Pressure Levels	
Maximum Permissible Sound Pressure Level for Daytime exceptions	7
RESULTS	7
STS Ambient Locations: Average L-Peak Impact Assessment	7
STS Ambient Locations: Average L-Peak Impact Assessment	
HAILE GOLD MINE PROPERTY BOUNDARY LOCATIONS — ENTIRE MINING OPERATION	
Haile Gold Mine Property Boundary Locations – Ore Processing Equipment	
One Mile Radius Locations	
DISCUSSION	12
CONCLUSION	13
APPENDIX A	14
APPENDIX B	15
APPENDIX C	16
APPENDIX D	17
APPENDIX E	18
APPENDIX F	19
APPENDIX G	20
APPENDIX H	21
APPENDIX I	22

LIST OF TABLES

Table 1. Approximate Addition of Sound Levels
Table 2. Summary of ambient data collected by STS at locations near the proposed Haile Gold Mine in Kershaw South Carolina
Table 3. Human reaction to increase in ambient sound level
Table 4. County of Lancaster Ordinance # 309 Maximum Permissible Sound Pressure Level
Table 5. County of Lancaster Ordinance # 309 Updated Octave Band Sound Pressure Levels
Table 6. County of Lancaster Ordinance # 309 Maximum Permissible Sound Pressure Level for Daytime exceptions
Table 7. Projected L _{max} noise levels for noise sources compared to the existing Average L-Peak ambient noise levels
Table 8. Change (increase) to existing ambient noise level and human reaction to increase based on existing L Peak Average ambient levels
Table 9. Projected L _{max} noise levels for noise sources compared to the existing L-Peak ambient noise levels9
Table 10. Change (increase) to existing ambient noise level and human reaction to increase based on existing L Peak ambient levels
Table 11. Projected L _{max} noise levels to Haile Gold Mine Property Boundary10
Table 12. Projected noise compared to Lancaster County Ordinance # 309 for non residential nighttime lot limits
Table 13. Projected noise compared to Lancaster County Ordinance # 309 for residential nighttime lot line limit
Table 14. Projected noise levels to receptor locations in a one mile radius of the proposed Haile Gold Mine Operation

Executive Summary

As per an agreement between Vibra-Tech Engineers, Inc. and Haile Gold Mine, Inc. Vibra-Tech has completed a noise impact analysis for the proposed Haile Gold Mine operation in Kershaw, South Carolina. This noise impact analysis focused on all major noise sources associated with the operation of the mine including rock crushing, ore processing equipment, rock drilling, and mobile hauling equipment with backup alarms.

In general, noise impacts from mining are assessed based on the overall contribution or increase of existing or background noise levels. Thus, it is very important to have accurate and representative background or ambient noise level data to conduct the impact assessment. For this project, South Technical Services, LLC (STS) has previously completed two background noise studies; one completed in November 2010, and the second in September 2011.

Based on the human perception and noise impact assessment performed for the proposed Haile Gold Mine operation, locations in Lancaster County for which STS conducted ambient monitoring, no significant change to existing ambient conditions were determined for noise receptor locations when compared to the projected L_{max} sound levels to ambient sound levels.

For property boundary locations for which the Lancaster County Ordinance # 309 as amended (including amendment by Ordinance # 979 to include Section 4.1.29, Mining and Extraction Operations) may be applied, the maximum projected sound pressure levels from ore processing equipment meet the specific octave band criteria for both non-residential and residential nighttime limits which are the most restrictive. The projected total noise levels at locations within a one mile radius of the proposed Haile Gold Mine ranged from 39 to 45 dBA.

All of the above results were obtained when performing the sound level projection analysis and impact assessment under the worst case condition of all fifty one (51) noise sources operating simultaneously and also for nine (9) noise sources associated with ore processing equipment. Under normal operating conditions of the proposed mine, it is probable that all 51 noise sources used in this analysis would not be running simultaneously. As the pit and bench areas of the mine are developed, the elevation of mobile and drilling equipment may be lowered, and noise levels may be further attenuated due to the benefit of developed berms. As overburden storage areas (OSA's) continue to develop, the OSA elevation may increase thus providing additional noise attenuation.

Noise Impact Analysis Haile Gold Mine Kershaw, South Carolina

Introduction

As per an agreement between Vibra-Tech Engineers, Inc. and Haile Gold Mine, Inc. Vibra-Tech has completed a noise impact analysis for the proposed Haile Gold Mine operation in Kershaw, South Carolina. The noise impact analysis focuses on all major noise sources associated with the operation of the mine, including rock crushing, ore processing equipment, rock drilling, and mobile hauling equipment with backup alarms.

Discussion of Sound Level Measurements

The measurement of noise involves quantifying both its rate (frequency in Hz) and intensity (pressure) relative to normal atmospheric pressure. People do not perceive all frequencies with equal sensitivity; rather, they respond to higher frequencies more than lower frequencies. The following discussion of sound levels measurements describes the types of measurements collected for these studies.

dB

A decibel (dB) is a unit of measure of sound pressure. The base or threshold of hearing is 0 dB. The calculations of dB are logarithmic allowing very large and very small relationships of sound pressure to be compared.

dBA

The A-weighted decibel level (dBA). A dBA sound level measurement weighs the various frequency components of a sound as perceived by the human ear in order to yield a single number indicator of its relative loudness. All measurements used in this study are dBA.

Maximum - dBA L_{max}

The maximum noise level recorded during a sample period.

Equivalent Sound Level - Lea

 L_{eq} is a measurement over a period of time and is the steady state sound level, which contains the same acoustic energy as the measured time varying sound level for the time period of the measurement.

Octave Band Levels

The various frequencies involved in a dBA sound level measurement can be broken down into a series of recordings known as octave band measurements. The octave band frequency ranges are listed by the center frequency of a band with the lower end of the band being approximately 70 percent of the center frequency and the upper end frequency twice the lower end. For example, 1 kHz band covers approximately 700 – 1400 Hz. The center frequencies are 63, 125, 500, 1000, 2000, 4000 and 8000 Hz.

Combining Sound Levels

In general, the approximate addition of sound levels can be made using the table below.

Table 1. Approximate Addition of Sound Levels

Difference between two sound levels	Add to the Higher of the two sound levels
1 dBA or less	3 dBA
2 to 3 dBA	2 dBA
4 to 9 dBA	1 dBA
10 dBA or more	0 dBA

STS Sound Descriptor Definitions

As per the STS ambient monitoring reports of November 2010 and September 2011, the sound level descriptor for maximum (L_{max}), Peak (L-Peak), and Leq are defined as follows:

Maximum

This is the maximum dBA reading recorded during the sample period. The maximum is a time weighted average of the highest dBA level over a one second sample.

I-Peak

The highest dBA value recorded during the sample period. The peak is sampled at a much faster rate than the maximum. The peak value is sampled at a rate of 50 microseconds. This type of measurement is typically used to evaluate instant/loud sounds such as gunshots.

<u>Leq – Energy Equivalent Sound Level</u>

The level of a constant sound, over a specific time period, that has the same sound energy as the actual (unsteady) sound over the sample period. This type of sample is typically used for environmental noise analysis and is commonly used for comparison to noise ordinances.

Ambient Sound Level Study

For this project, South Technical Services, LLC (STS) has previously completed two background noise studies, one in November 2010, and the second in September 2011. Please refer to STS reports for details of the studies.

The STS reports summarize ambient sound levels measured and reported at ten locations. One hour Leq tests were reported at four 4 locations, with L Peak and L Peak averages reported at all ten locations. L_{max} levels were plotted for two of the ten locations and not summarized in the reports.

Because one hour Leq and L_{max} levels were not reported at all locations, Vibra-Tech used the L-Peak Average and L-Peak sound levels from the STS reports to conduct the sound level projection analysis and noise impact assessment for ambient noise locations. The lowest L-Peak Average and L-Peak values were used in the noise impact assessment.

A summary of the ambient data provided in the STS reports is provided in Table 1 below. The yellow shaded values represent ambient L-Peak average levels used for impact assessment at residential or commercial receptor locations. The blue shaded values represent ambient L-Peak sound levels.

Table 2. Summary of ambient data collected by STS at locations near the proposed Haile Gold Mine in Kershaw, South Carolina.

Monitoring Location	Mid Morning		Late Afternoon	
All measurements in A-weighting –All are L-Leq 1 hour)	Results		/Evening Results	
	Average Peak	Peak	Average Peak	Peak
Haile Baptist Church (HBC) – L Peak	72.5	89.0	68.0	86.1
Haile Baptist Church (HBC) – Leq (1 hr)	49.7	63.6	44.6	58.5
Kershaw Industrial Park (KIP) - L Peak	79.4	98.7	77.0	89.6
Kershaw Industrial Park (KIP) – Leq (1 hr)	56.6	68.1	52.4	63.1
*Corner of Gold Mine Highway and Haile Gold Mine Road (Loc 1)	63.6	76.5	*57.9	*69.8
*Along Haile Gold Mine Road (Loc 3)	56.6	68.1	*52.4	*63.1
Corner of Snowy Owl and Gold Mine Highway (House SO/GMH)	56.6	71.6	55.1	63.2
Houses along Snowy Owl Road (HouseSOR)	49.1	69.8	50.2	65.1
Gold Mine Highway and Route # 265 (GMH-Rt265)	60.9	72.7	58.0	62.4
Corner of Snowy Owl Road and State Road 219 (SOR219)	58.1	64.5	54.1	59.2
	Daytime Ambient			
5099 Gold Mine Highway (5099GMH) – L Peak	74.5	94.0		
5099 Gold Mine Highway (5099GMH) – Leq (1hr)	50.7	65.6		
Intersection Estridge Ave with State Road 29-204 (SR29/204) – L Peak	79.4	93.4		
Intersection Estridge Ave with State Road 29-204 (SR29/204)-Leq (1hr)	62.3	63.1		

^{*} Location along highway in right-of way not associated with any residential or commercial property

Sound Level Projection Analysis

In order to assess the overall potential noise impact from the mine, sound level projection analysis for the Haile Gold Mine operation was completed. All sound level projections were made using the GeoSonics sound propagation model SONCALC. This mathematical model was inspired by the NOISECALC model, developed by D. A. Driscoll, formerly with the New York State Department of Environmental Conservation. Both SONCALC and NOISECALC sound propagation models use the barrier calculations set fourth in the book by L. L. Beranek Noise and Vibration Control, and use American National Standards Institute (ANSI) standard atmospheric attenuation and standard sound propagation formula.

For assessing the entire operation, sound level projection analysis was based on the L_{max} source sound level from fifty one (51) noise sources associated with the proposed Haile Gold Mine operation. The L_{max} noise source data for all stationary, mobile, and backup alarm noise sources proposed to be in operation at the mine and used in the model were provided by Haile Gold Mine and from historical data collected by Vibra-Tech. A summary of noise source information used in the model is summarized in Appendix A. For each noise source, the maximum noise level at a specific reference distance along with the State Plane coordinate and elevation were input into the model. It should be noted the model assumes that all 51 noise sources were operating at the same time.

The combined L_{max} sound level from all 51 noise sources was projected to thirty nine (39) receiver locations. The receiver locations consisted of ten (10) locations for which STS had previously conducted ambient noise level testing, twelve (12) locations around the property boundary of the proposed mine, and nine (9) locations representing a one mile radius around the mine, and eight (8) receiver locations located in Kershaw County. For each receiver location, the State Plane coordinate and elevation were input into the model. A summary of all receiver location information appears in Appendix B. Again, the model assumed that all noise sources were active at the same time to represent the most conservative and worst case approach. A map indicating the projected L_{max} noise level to all receiver locations is included in Appendix C. For sound level projection analysis of ore processing equipment, nine (9) noise sources were used in the model to predict octave band sound levels at property boundary locations around the proposed mine.

Based on the data provided by STS in Table 1 above, L- Peak Average and L- Peak are the two parameters that may represent the L_{max} (by definition above) for use in comparing the ambient L_{max} to the projected L_{max} .

Human Perception and Impact Assessment

In assessing and mitigating noise impact, it is generally accepted that human perception and response to increases in sound pressure levels will vary depending on the decibel level increase. An increase or change in sound pressure level of 5 dB or less is considered imperceptible or unnoticeable to people. An increase of greater than 6 dB is considered intrusive, with a 10-15 dB increase very noticeable, and a 15-20 dB objectionable. Increasing the sound pressure level more than 20 dB is considered very objectionable to intolerable.

Table 3. Human reaction to increase in ambient sound level

Increase in Ambient SPL dBA	Human Reaction	
0	Unnoticed	
Under 5	Unnoticed to tolerable	
5 - 10	Intrusive	
10-15	Very Noticeable	
15 - 20	Objectionably	
Over 20	Very objectionably to intolerable	

For this project, ambient sound level data was previously measured at ten (10) locations around the proposed mine by STS in Lancaster County. Using this ambient data, a comparison of existing (ambient) L-Peak Average and L-Peak data to the projected L_{max} noise levels for these locations was completed in order to determine potential noise impact based on increase to ambient conditions.

For other receptor locations located in Lancaster County for which no ambient data was measured, the projected L_{max} levels are reported.

Lancaster County Noise Ordinance

The State of South Carolina, County of Lancaster Ordinance # 309, Section 4.1.29 (11) – Section 4.1.16 imposes noise restrictions on any ore processing facility associated with the mining operation. This ordinance has been included in Appendix D of this report.

Section 4.1.16 Manufacturing /Processing Uses:

Noise: All noise shall be muffled so as not to be objectionable due to intermittence, beat, frequency, or shrillness. In no event shall the sound pressure level of noise radiated continuously from a facility exceed at the lot line the values given in the table 4 below in any octave band or frequency. Sound pressure level shall be measured with a sound level meter and an octave band analyzer that conforms to specifications published by the American National Standards Institute.

A. Nighttime Schedule

Maximum permissible sound pressure levels at the lot line for noise radiated continuously from a facility between the hours of 7 p.m. and 7 a.m.

Table 4. County of Lancaster Ordinance # 309 Maximum Permissible Sound Pressure Level

Maximum Continuous Sound Pressure Levels – Nighttime Schedule			
	Sound Pressure Levels – (In Decibels)		
Frequency Band (cycles per second Hz)	At Non-Residential Lot Line	At Residential Lot Line	
20-75	69	65	
76-150	60	50	
151-300	56	43	
301-600	51	38	
601-1200	42	33	
1201-2400	40	30	
2401-4800	38	28	
4801-10000	35	20	

The American Standard Z24.10-1953 for octave band filter specifications has been updated from band edge (old bands) frequencies to octave band filters termed *preferred frequencies* (new bands) as specified in the American Standard S1.6-1960. Since band edge sound level equipment is no longer available, an interpolation formula is used to convert the old bands to the new bands. Based upon this formula, the Lancaster County octave bands have been corrected and updated. The updated levels for the preferred octave band frequencies would be as follows:

Table 5. County of Lancaster Ordinance # 309 Updated Octave Band Sound Pressure Levels

Updated Maximum Continuous Sound Pressure Levels – Nighttime Schedule			
	Sound Pressure Levels – (In Decibels)		
Octave Band (cycles per second Hz)	At Non-Residential Lot Line	At Residential Lot Line	
63	66.9	62.9	
125	59.0	49.0	
250	54.8	41.8	
500	48.9	35.9	
1000	41.5	32.5	
2000	39.5	29.5	
4000	37.3	27.3	
8000	34.3	19.3	

B. Daytime Schedule

Maximum permissible sound pressure levels at the lot line for noise radiated from a facility between the hours of 7 a.m. and 9 p.m. shall not exceed the limits of the preceding table except as specified and corrected below:

Table 6. County of Lancaster Ordinance # 309 Maximum Permissible Sound Pressure Level for Daytime exceptions

Maximum Continuous Sound Pressure Level Exceptions – Daytime		
Type of Operation in Character of Noise	*Correction in Decibel	
Daytime Operation Only	Plus 5	
Noise source operates less than 20 % of any one-hour period	Plus 5	
Noise source operates less than 5 % of any one-hour period	Plus 10	
Noise source operates less than 1 % of any one-hour period	Plus 15	
Noise of Impulsive character (hammering, etc.)	Minus 5	
Noise of periodic character (hum, speech, etc.)	Minus 5	
* Applied only if these corrections may be applied to the preceding table.		

Results

STS Ambient Locations: Average L-Peak Impact Assessment

Tables 7 and 8 below provide a summary of the projected noise levels and impact assessment based on increase to existing ambient noise levels for ten receptor locations located around the proposed mine operation. These results are based on the <u>Average L-Peak</u> levels reported by STS and worst case elevations of noise sources. Please note that if measured ambient levels are the same or higher than projected L_{max} noise levels, no change to ambient noise will be shown in Table 8. The computer model output for this analysis is included in Appendix E.

Table 7. Projected L_{max} noise levels for noise sources compared to the existing <u>Average L-Peak</u> ambient noise levels.

Locations for which STS measured ambient sound levels	Projected L _{max} (dBA) Without background	Projected L _{max} (dBA) With background	Measured Ambient Average L-Peak (dBA)
Haile Baptist Church (HBC)	50	68	68
Kershaw Industrial Park (KIP)	52	77	77
*Corner of Gold Mine Highway and Haile Gold Mine Road (Loc 1)	56	60	57.9
*Along Haile Gold Mine Road (Loc 3)	52	55	52.4
Corner of Snowy Owl and Gold Mine Highway (House SO/GMH)	50	56	55.1
Houses along Snowy Owl Road (HouseSOR)	53	54	49.1
Gold Mine Highway and Route # 265 (GMH-Rt265)	46	58	58
Corner of Snowy Owl Road and State Road 219 (SOR219)	52	56	54.1
5099 Gold Mine Highway (5099GMH)	43	74.5	74.5
Intersection Estridge Ave with State Road 29-204 (SR29/204)	42	79.4	79.4

Table 8. Change (increase) to existing ambient noise level and human reaction to increase based on existing L-Peak Average ambient levels

Locations for which STS measured ambient sound levels	Change in Ambient	Human Reaction to increase in ambient
Haile Baptist Church (HBC)	0	Unnoticed
Kershaw Industrial Park (KIP)	0	Unnoticed
*Corner of Gold Mine Highway and Haile Gold Mine Road (Loc 1)	2.1	Unnoticed to tolerable
*Along Haile Gold Mine Road (Loc 3)	2.6	Unnoticed to tolerable
Corner of Snowy Owl and Gold Mine Highway (House SO/GMH)	0.9	Unnoticed to tolerable
Houses along Snowy Owl Road (House SOR)	4.9	Unnoticed to tolerable
Gold Mine Highway and Route # 265 (GMH-Rt265)	0	Unnoticed
Corner of Snowy Owl Road and State Road 219 (SOR219)	1.9	Unnoticed to tolerable
5099 Gold Mine Highway (5099GMH)	0	Unnoticed
Intersection Estridge Ave with State Road 29-204 (SR29/204)	0	Unnoticed

STS Ambient Locations: L-Peak Impact Assessment

Tables 9 and 10 below provide a summary of the projected noise levels and impact assessment based on an increase to existing ambient noise levels for ten receptor locations located around the proposed mine site. These results are based on the <u>L-Peak levels</u> reported by STS and worst case of all sources operating simultaneously. Please note that if measured ambient levels are the same or higher than projected L_{max} noise levels, no change to ambient noise will be shown in Table 9. The computer model output for this analysis is included in Appendix F.

Table 9. Projected L_{max} noise levels for noise sources compared to the existing L-Peak ambient noise levels

Locations for which STS measured ambient sound levels	Projected L _{max} (dBA) Without background	Projected L _{max} (dBA) With background	Measured Ambient L-Peak (dBA)
Haile Baptist Church (HBC)	50	86.1	86.1
Kershaw Industrial Park (KIP)	52	89.6	89.6
*Corner of Gold Mine Highway and Haile Gold Mine Road (Loc 1)	56	69.8	69.8
*Along Haile Gold Mine Road (Loc 3)	52	63.1	63.1
Corner of Snowy Owl and Gold Mine Highway (House SO/GMH)	50	63.2	63.2
Houses along Snowy Owl Road (HouseSOR)	53	65.1	65.1
Gold Mine Highway and Route # 265 (GMH-Rt265)	46	62.4	62.4
Corner of Snowy Owl Road and State Road 219 (SOR219)	52	59.2	59.2
5099 Gold Mine Highway (5099GMH)	43	94.0	94.0
Intersection Estridge Ave with State Road 29-204 (SR29/204)	42	93.4	93.4

Table 10. Change (increase) to existing ambient noise level and human reaction to increase based on existing L-Peak ambient levels

Locations for which STS measured ambient sound levels	Change in Ambient	Human Reaction to increase in ambient
Haile Baptist Church (HBC)	0	Unnoticed
Kershaw Industrial Park (KIP)	0	Unnoticed
*Corner of Gold Mine Highway and Haile Gold Mine Road (Loc 1)	0	Unnoticed
*Along Haile Gold Mine Road (Loc 3)	0	Unnoticed
Corner of Snowy Owl and Gold Mine Highway (House SO/GMH)	0	Unnoticed
Houses along Snowy Owl Road (House SOR)	0	Unnoticed
Gold Mine Highway and Route # 265 (GMH-Rt265)	0	Unnoticed
Corner of Snowy Owl Road and State Road 219 (SOR219)	0	Unnoticed
5099 Gold Mine Highway (5099GMH)	0	Unnoticed
Intersection Estridge Ave with State Road 29-204 (SR29/204)	0	Unnoticed

Haile Gold Mine Property Boundary Locations - Entire Mining Operation

Table 11 below lists the projected L_{max} sound levels to Haile Gold Mine Property boundary receptor locations. The projected noise levels represent the maximum noise levels resulting from the combined 51 noise sources proposed at the Haile Gold Mine. These sound level projections represent a worst case in that all noise sources are operating at the same time. The computer model output for this analysis is included in Appendix G.

Table 11. Projected L_{max} noise levels to Haile Gold Mine Property Boundary

Receptor Location	Projected L _{max} dBA
Property Boundary 11	45
Property Boundary 12	55
Property Boundary 13	51
Property Boundary 14	51
Property Boundary 15	56
Property Boundary 16	46
Property Boundary 17	53
Property Boundary 18	42
Property Boundary 19	42
Property Boundary 20	49
Property Boundary 21	52
Property Boundary22	52

Haile Gold Mine Property Boundary Locations - Ore Processing Equipment

For property boundary noise receptor locations located in Lancaster County, the projected L_{max} noise levels resulting from the operation of ore processing equipment were directly compared to the Lancaster County # 309 previously summarized in this report. The projected noise levels in eight octave bands represent the maximum noise levels resulting from the operation of proposed ore processing equipment at the Haile Gold Mine. The computer model output for this analysis is included in Appendix H. This analysis was conducted for the most restrictive schedule of nighttime Non-Residential and Residential Lot Line Limits. The results of this analysis are presented in Tables 12 and 13 below.

Table 12. Projected noise compared to Lancaster County Ordinance # 309 for non residential nighttime lot line limits

Frequency (Hz)	63	125	250	500	1000	2000	4000	8000
Non Residential Lot Line Limit dB	66.9	59.0	54.8	48.9	41.5	39.5	37.3	34.3
Property Boundary 11	51	37	35	17	1	0	0	0
Property Boundary 12	55	41	40	23	2	0	0	0
Property Boundary 13	50	36	34	16	5	0	0	0
Property Boundary 14	46	31	28	7	5	0	0	0
Property Boundary 15	47	33	31	11	5	0	0	0
Property Boundary 16	46	31	29	8	5	0	0	0
Property Boundary 17	56	42	41	24	4	0	0	0
Property Boundary 18	46	31	29	8	5	0	0	0
Property Boundary 19	46	32	29	9	5	0	0	0
Property Boundary 20	55	42	41	24	1	0	0	0
Property Boundary 21-Gregory (561)	52	37	36	18	5	0	0	0
Property Boundary22-Gregory (565)	52	38	36	18	5	0	0	0
Rec 1-Haile Baptist Church (HBC)	51	37	35	17	0	0	0	0
Rec 5-Houses Corner SO-GMH	57	43	42	25	4	0	0	0
Rec 6-Houses along SOR	61	48	47	31	10	1	0	0
Rec 7-GMH-Rt 265	52	38	36	18	5	0	0	0
Rec 8-SOR/R219	56	42	41	25	3	0	0	0
Rec 9-5099 GMH	48	34	31	12	5	1	0	0

Table 13. Projected noise compared to Lancaster County Ordinance # 309 for residential nighttime lot line limits

Frequency (Hz)	63	125	250	500	1000	2000	4000	8000
Residential Lot Line Limit dB	62.9	49	41.8	35.9	32.5	29.5	27.3	19.3
Property Boundary 11	51	37	35	17	1	0	0	0
Property Boundary 12	55	41	40	23	2	0	0	0
Property Boundary 13	50	36	34	16	5	0	0	0
Property Boundary 14	46	31	28	7	5	0	0	0
Property Boundary 15	47	33	31	11	5	0	0	0
Property Boundary 16	46	31	29	8	5	0	0	0
Property Boundary 17	56	42	40	24	4	0	0	0
Property Boundary 18	46	31	29	8	5	0	0	0
Property Boundary 19	46	32	29	9	5	0	0	0
Property Boundary 20	55	42	40	24	1	0	0	0
Property Boundary 21	52	37	36	18	5	0	0	0
Property Boundary22	52	38	36	18	5	0	0	0
Rec 1-Haile Baptist Church (HBC)	51	37	35	17	0	0	0	0
Rec 5-Houses Corner SO-GMH	57	43	40	25	4	0	0	0
Rec 6-Houses along SOR	61	48	40	31	10	1	0	0
Rec 7-GMH-Rt 265	52	38	36	18	5	0	0	0
Rec 8-SOR/R219	56	42	40	25	3	0	0	0
Rec 9-5099 GMH	48	34	31	12	5	1	0	0

One Mile Radius Locations

For noise receptor locations located within a one mile radius of the proposed mine, the projected L_{max} noise levels are reported in Table 14 below. The projected noise levels represent the maximum noise levels resulting from the operation of 51 noise sources proposed at the Haile Gold Mine. Again for this analysis the model assumed all 51 noise sources were operating at the same time. The computer model output for this analysis is included in Appendix I.

Table 14. Projected noise levels to receptor locations in a one mile radius of the proposed Haile Gold Mine Operation

Receptor Location	Projected Lmax dBA
One Mile Radius-23	40
One Mile Radius-24	43
One Mile Radius-25	45
One Mile Radius-26	44
One Mile Radius-27	45
One Mile Radius-28	43
One Mile Radius-29	42
One Mile Radius-30	40
One Mile Radius-31	39

Discussion

In general, sound is defined as what people hear every day. Noise, as opposed to sound, can be defined as unwanted sound. When lands adjoining an existing or proposed facility contain residential, commercial, or recreational land uses, noise is likely to be a concern to proximal land owners. Several environmental factors determine the level, or perceptibility, of sound at a given receptor location. The most important of these factors are the distance from the sound source to the receptor, the surrounding terrain (elevation), and the existing background or ambient noise levels. Characteristics of sound are also important factors in determining perception and impact. The amplitude or loudness usually measured as dBA, the nature or pattern of the sound, impulse or maximum, and the duration of the sound. Vibra-Tech considered all of these factors in this noise impact assessment.

The distance between the noise source(s) and the receptor locations is the most compelling factor in the outcome of the impact analysis. The decrease in sound level over distance normally follows the inverse square law. At distances of fifty (50) feet or greater from a sound source, every doubling of distance produces a 6 dBA reduction in sound. Therefore, a sound of 70 dBA at 50 feet would have a sound level of approximately 64 dBA at 100 feet. At 200 feet the sound level would be 58 dBA. For this project, the closest distance from any noise source to any receiver was approximately 970 feet.

Measuring or projecting the maximum sound pressure level at a receptor location can be an appropriate approach to impact assessment. Most humans find a sound level of 60 to 70 dBA as being a condition of significant noise impact (EPA 550/9-79-100, Nov 1978). For most non-industrial areas, ambient sound levels should not be increased by 6 dBA or more at any receptor location (NYS Environmental Procedures Manual, Chapter 3.1, Environmental Analysis Bureau, DOT, 1998). An increase in ambient of 6 dBA or more may cause complaints.

Futhermore, the addition of any noise source in a non-industrial setting should not raise the background level above a maximum of 65 dBA during daytime hours. This would be considered the upper end limit since 65 dBA allows for undisturbed speech at a distance of approximately 3 feet.

In cases where a noise ordinance or performance standard is presented using octave band limits, the limits are usually broken down into limits within center frequencies from 63 to 8000 Hz. This was the case for Lancaster County Ordinance # 309. For this standard, a linear (non weighted) dB limit within each octave band was given.

Conclusion

Based on the human perception and noise impact assessment performed for the proposed Haile Gold Mine operation, no significant change to existing ambient conditions could be determined for noise receptor locations when comparing the projected L_{max} sound levels to ambient sound levels. These results appear in Tables 7 and 8. For these locations included in the STS ambient studies, the analysis indicated less than a 5 dBA increase in ambient sound levels which corresponds to a human perceptibility of unnoticed to tolerable.

For property boundary locations within Lancaster County, for which the Lancaster Noise Ordinance # 309 may be applied to ore processing equipment, the projected noise levels at the property boundary comply to the ordinance. The projected noise levels in a one mile radius of the mine range from 39 to 45 dBA.

All of the above described results were obtained when performing the sound level projection analysis and impact assessment under the worst case condition of all fifty one (51) noise sources operating simultaneously including the operation of ore processing equipment. Under normal operating conditions of the proposed mine, it is probable that all 51 noise sources used in this analysis would not be running simultaneously. As the pit and bench areas of the mine become developed, the elevation of mobile and drilling equipment will be lowered, and noise levels may be attenuated further due to the benefit of developed berms. As overburden storage areas (OSA's) continue to develop, the OSA elevation may increase thus providing addition berms.

Respectfully submitted, VIBRA-TECH ENGINEERS, INC.

Sincerely, Vibra-Tech Engineers, Inc.

Jonathan A. Ferdinand
Jonathan A. Ferdinand

Vibration and Sound Analyst Douglan Ruclenho

Douglas Rudenko, P.G Vice President

Northeast Regional Manager

APPENDIX A

Soundcalc Reference Noise Source Data and Coordinates

Source	Number	Х	Y	Z		Total dBA	ref dist-ft	31.5	63	125	250	500	1000	2000	4000	8000	16000
Primary crusher	1	2141378	579767	548		95.3	3.3	79	88	88	93	83	73	62	48	40	35
SAG mill motor	2	2141312	580715	556		95.3	3.3	79	88	88	93	83	73	62	48	40	35
Ball mill motor	3	2141288	580813	556		95.3	3.3	79	88	88	93	83	73	62	48	40	35
Regrind mill motors	4	2141228	580996	559		80.2	3.3	72	76	77	63	60	53	45	41	35	30
Regrind mill motors	5	2141224	581014	559		80.2	3.3	72	76	77	63	60	53	45	41	35	30
Regrind mill motors	6	2141219	581031	559	1	80.2	3.3	72	76	77	63	60	53	45	41	35	30
Regrind mill motors	7	2141219	580991	559	i,	80.2	3.3	72	76	77	63	60	53	45	41	35	30
		+			:				76	77	63	60	53	45	41	35	30
Regrind mill motors	8	2141204	581009	559		80.2	3.3	72									
Regrind mill motors	9	2141200	581026	559		80.2	3.3	72	76	77	63	60	53	45	41	35	30
Mobile Equipment				Best	Worst						<u>!</u>						
Ramona's OSA-ROSA								.,,,,								<u> </u>	
ROSA Cat 777 HT	10	2135000	571900	425	680	84	50	68	76	78	82	73	63	53	40	35	30
ROSA Cat 777 HT	11	2134950	571850	425	680	84	50	68	76	78	82	73	63	53	40	35	30
ROSA Cat 777 HT	12	2134900	571800	425	680	84	50	68	76	78	82	73	63	53	40	35	30
ROSA D9T Doz	13	2134850	571750	425	680	87	50	68	76	78	82	73	63	53	40	35	30
ROSA D9T Doz	14	2134800	571700	425	680	87	50	68	76	78	82	73	63	53	40	35	30
		aller and the second			of a contract					78		73	63	53	40	35	30
ROSA D9T Doz	15	2134750	571650	425	680	87	50	68	76		82						
ROSA BU Alarm	16	2134700	571600	425	675	112	4	80	85	100	112	88	90	60	45	41	30
									1							İ	ļ
Johnny's PAG-JP					ĺ								1			· .	
JP Cat 777 HT	17	2139000	578200	525	680	84	50	68	76	78	82	73	63	53	40	35	30
JP Cat 777 HT	18	2138950	578150	525	680	84	50	68	76	78	82	73	63	53	40	35	30
JP Cat 777 HT	19	2138900	578100	525	680	84	50	68	76	78	82	73	63	53	40	35	30
JP D9T Doz	20	2138850	578050	525	680	87	50	68	76	78	82	73	63	53	40	35	30
		4			the second of th		in a constant the second		4	4					40	35	30
JP D9T Doz	21	2138800	578000	525	680	87	50	68	76	78	82	73	63	53	<u> </u>		
JP D9T Doz	22	2138750	577950	525	680	87	50	68	76	78	82	73	63	53	40	35	30
JP BU Alarm	23	2139010	578210	525	680	112	4	80	85	100	112	88	90	60	45	41	30
Hayworth's OSA-HOSA																	1
HOSA Cat 777 HT	24	2143400	577400	500	700	84	50	68	76	78	82	73	63	53	40	35	30
HOSA Cat 777 HT	25	2143350	577350	500	700	84	50	68	76	78	82	73	63	53	40	35	30
		†								· į · · · · · · · · · · · · · · · · · ·			+		40	35	30
HOSA Cat 777 HT	26	2143300	577300	500	700	84	50	68	76	78	82	73	63	53			
HOSA D9T Doz	27	2143250	577250	500	700	87	50	68	76	78	82	73	63	53	40	35	30
HOSA D9T Doz	28	2143200	577200	500	700	87	50	68	76	78	82	73	63	53	40	35	30
HOSA D9T Doz	29	2143150	577150	500	700	87	50	68	76	78	82	73	63	53	40	35	30
HOSA BU Alarm	30	2143410	577410	500	690	112	4	80	85	100	112	88	90	60	45	41	30
James' OSA-JOSA																	<u> </u>
JOSA Cat 777 HT	31	2143700	580600	525	630	84	50	68	76	78	82	73	63	53	40	35	30
JOSA Cat 777 HT	32	2143650	580550	525	630	84	50	68	76	78	82	73	63	53	40	35	30
		the contract of the contract	** * * * * * * * * * * * * * * * * * * *			4	\$		4	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\$		4	6		4
JOSA Cat 777 HT	33	2143600	580500	525	630	84	50	68	76	78	82	73	63	53	40	35	30
JOSA D9T Doz	34	2143550	580450	525	630	87	50	68	76	78	82	73	63	53	40	35	30
JOSA D9T Doz	35	2143500	580400	525	630	87	50	68	76	78	82	73	63	53	40	35	30
JOSA D9T Doz	36	2143450	580350	525	630	87	50	68	76	78	82	73.	63	53	40	35	30
JOSA BU Alarm	37	2143710		525	630	112	4	80	85	100	112	88	90	60	45	41	30
										1	<u> </u>						
Drills																	ļ
Champion Pit-CP								A Charles Co.	1		1		7	1			
CP-Drill 1	38	2133700	575500	460		94	4	63	85	93	83	75	70	60	50	40	30
CP-Drill 2	39	2133650	575450	460		94	4	63	85	93	83	75	70	60	50	40	30
CP-Drill 3	40	2133600	or terment of the exercise of a	460		94	4	63	85	93	83	75	70	60	50	40	30
Small Pit										-1							ļ
		0.0000			<u> </u>	 			ļ	 						10	+
SP-Drill 1	41	2134800		480		94	4	63	85	93	83	75	70	60	50	40	30
SP-Drill 2	42	2134750		480	1	94	4	63	85	93	83	75	70	60	50	40	30
SP-Drill 3	43	2134700	573900	480		94	4	63	85	93	83	75	70	60	50	40	30
Snake Pit-SKP					1	-		***************************************						<u> </u>	-		1
The state of the s		2442400	E7E600	400		- 04		60	O.F	00	02	75	70	60	50	40	30
SKP-Drill 1	44	2142100		420		94	4	63	85	93	83	75	70	60	50		
SKP-Drill 2	45	2142050		420		94	4	63	85	93	83	75	70	60	50	40	30
SKP-Drill 3	46	2142000	575500	420		94	4	63	85	93	83	75	70	60	50	40	30
Ledbetter Pit-LP										Topo or the state of the state					-		
LP-Drill 1	47	2139600	576900	440	<u> </u>	94	4	63	85	93	83	75	70	60	50	40	30
LP-Drill 2	48	2139550	576850	440	ļ	94	4	63	85	93	83	75 75	70	60	50	40	30
																	
LP-Drill 3	49	2139500	0/0800	440	1	94	4	63	85	93	83	75	70	60	50	40	30
TSF-Cat 777 HT	50	2127500	585300	620		NΟ	50	60	76	70	92	72	63	53	40	35	30
	50 51	2137500 2137450		620 620	1	84 87	50 50	68 68	76 76	78 78	82 82	73 73	63	53	40	35	30
TSP-Cat D9 Doz							. 611					. / 4	- n3	2.3			

APPENDIX B

Site Map of Haile Gold Mine indicating Noise Source and Receptor Locations

Noise Source and Receptor Locations

Key: Receptors

Receptor Locations

1. Haile Baptist Church
2. Kershaw Industrial Park

5. Houses-Corner SO-GMH

11-22. Property Boundary Locations
23-31. One-Mile Boundary Locations

32-39. Kershaw County Locations

6. Houses-Along SOR

7. GMH-Rt265

8. SOR-R219

9.5099 GMH

10. SR29-204

3. Loc1-GMH-GMR 4. Loc3-SO-GMH

APPENDIX C

Site Map of Haile Gold Mine and Surrounding Area indicating Projected Lmax Noise Levels

Projected Sound Levels (dBA)

Key: One-Mile Radius Boundary Receptors - Receptor Locations Location #	Projected Sound Levels (dBA)
23.	40
24.	43
25.	45
26.	44
27.	45
28.	43
29.	42
30.	40
31.	39

Key: Kershaw County Receptors - Receptor Locations	Projected Sound Levels (dBA)
Location #	
32.	48
33.	48
34.	48
35.	48
36.	48
37.	47
38.	47
39.	48

APPENDIX D

South Carolina, County of Lancaster Ordinance # 309

CHAPTER 4. - CONDITIONAL AND SPECIAL EXCEPTION USES

- Section 4.1 Purpose for conditional uses.
- Section 4.1.1 How to measure separation requirements.
- Section 4.1.2 Adult day care.
- Section 4.1.3 Bed and breakfast.
- Section 4.1.4 Business uses (any non-single-family use) allowed in the R-45A and R-45B Districts.
- Section 4.1.5 Child day care.
- Section 4.1.6 Commercial kennels.
- Section 4.1.7 Convenience centers.
- Section 4.1.8 Home occupations.
- Section 4.1.9 Hotel/motel.
- Section 4.1.10 Livestock auction houses.
- Section 4.1.11 Motor vehicle related businesses.
- Section 4.1.12 Manufactured homes.
- Section 4.1.13 Manufactured home parks.
- Section 4.1.14 Manufactured home storage lots.
- Section 4.1.15 Manufactured home subdivisions.
- Section 4.1.16 Manufacturing/processing uses.
- Section 4.1.17 Mini-warehouses.
- Section 4.1.18 Private or commercial horse stables.
- Section 4.1.19 Recycling facilities, convenience centers, and resource recovery facilities.
- Section 4.1.20 Site built or modular single-family detached house located in the commercial, industrial or multiple-family districts.
- Section 4.1.21 Reserved.
- Section 4.1.22 Stockyards, slaughter houses, commercial poultry houses, commercial meat production centers and swine lots.
- Section 4.1.23 Temporary dependent care residences.
- Section 4.1.24 Temporary emergency, construction, or repair residences.
- Section 4.1.25 Temporary structures other than residences.
- Section 4.1.26 Wireless communications transmission facilities.
- Section 4.1.27 Motor vehicle dealer (used).
- Section 4.1.28 Body piercing establishment, body branding establishment, or tattoo parlors.
- Section 4.1.29 Mining and extraction operations.
- Sec. 4.1.30 Golf courses.
- Sec. 4.1.31 Livestock production.
- Sec. 4.1.32. Wastewater treatment facilities.
- Section 4.2 Purpose for special exceptions.
- Section 4.2.1 Automotive wrecking, and/or junk, and/or salvage yards.
- Section 4.2.2 Adult uses.
- Section 4.2.2.1 Classifications.
- Section 4.2.2.2 Location.
- Section 4.2.3 Construction, demolition, and land clearing debris landfills.
- Section 4.2.4 Reserved.
- Section 4.2.5 Motorized race and testing tracks.
- Section 4.2.6 Pistol, rifle or skeet range.
- Section 4.2.7 Sanitary landfills.
- Section 4.2.8 Solid waste storage and transfer facilities, waste tire treatment sites, and composting facilities.
- Section 4.2.9 Special events.
- Section 4.2.10 Video game machine establishments.
- Section 4.2.11. Turkey shoots.

Section 4.2.12 - Solid waste processing facilities.

Section 4.2.13 - Waste tires processing facilities (recycling).

Section 4.2.14 - Composting facilities.

Section 4.1 - Purpose for conditional uses.

Due to the nature and potential impact of uses listed in this portion of this chapter, such uses shall only be allowed within Lancaster County if all of the listed conditions pertaining to each use are met. If all of the listed conditions pertaining to each use are met, no further review is required. Variances from these minimum requirements shall not be approved unless the applicant can demonstrate a hardship would occur if the ordinance is applied to the site as written.

Section 4.1.1 - How to measure separation requirements.

The distance is measured by following a straight line from the closest point of the lot line of the lot which contains the use which the conditional or special exception use is to be separated from to the closest point where the proposed conditional or special exception use is to be located on the site.

For example: A slaughter house is to be located at least 2,640 feet from a religious institution. See diagram below.

Section 4.1.2 - Adult day care.

Adult day care, provided that:

- 1. No sign exceeding four square feet in area shall be permitted and all signs shall be non-illuminated; and
- 2. The lot size shall be no less than 30,000 square feet; and
- 3. The construction and operation of such facilities shall comply with all applicable federal, state or local codes.
- 4. If located in an R-45A or R-45B district the requirements of section 4.1.4 apply to this use.

Section 4.1.3 - Bed and breakfast.

- 1. The bed and breakfast shall be operated in a principal structure constructed before the effective date of this ordinance and not in any accessory structure.
- 2. No exterior additions or alterations shall be made for the express purpose of creating or maintaining a bed and breakfast.
- 3. The owner of the bed and breakfast or full time manager shall reside in the structure.
- 4. The use of the dwelling unit for the bed and breakfast shall be clearly incidental and subordinate to its use as a principal residence.
- 5. The structure must contain one full bathroom for the exclusive use of the owner or resident manager and other members of the immediate household.
- 6. The guest rooms shall be offered primarily to transient persons for rental or lease by the day or

week. Maximum length of stay is limited to 14 days in any 30-day period of time. The property owner or full time manager shall keep a current guest register including names, addresses, and dates of occupancy of all guests. These records shall be available for inspection by the building and zoning official.

- 7. For bed and breakfast establishments, one off-street parking space for the owner/manager and one space per guest room shall be required. The required off-street parking may be located on the lot containing the bed and breakfast provided that it is not located in the front yard.
- 8. Not more than one sign advertising the existence of a bed and breakfast operation may be erected on the lot where such use is located. No side of this sign may exceed four square feet in surface area. The sign may not be internally illuminated.

Section 4.1.4 - Business uses (any non-single-family use) allowed in the R-45A and R-45B Districts.

Business uses allowed in these districts shall meet the following requirements:

- 1. Property is located at the intersection of two roads. One road shall be part of the state highway system.
- 2. No business use shall be allowed on a lot having frontage on a local street.
- 3. Commercial buildings shall contain no more than 6,000 square feet of gross floor area. Exception: Retail—"Food store" can contain up to 12,000 square feet of gross floor area.
- 4. A Type 2 buffer yard shall be provided along the side and rear property lines.
- 5. The requirements of section 12.2.2, street yard landscaping shall be met.

Section 4.1.5 - Child day care.

Child day care, provided that:

1. When a center is licensed for six to 29 children, inclusive, there shall be 75 square feet per child of outdoor play area for the total number of children for which the center is licensed. In addition, the total number of children on the playground shall not exceed the number the space will accommodate at 75 square feet per child;

When a center is licensed for thirty 30 or more children, there shall be 75 square feet per child of outdoor play area for a least one-half of the total number for which the center is licensed, provided that the minimum amount of space on the outdoor play area must be enough to accommodate at least 30 children. In addition, the total number of children on the playground shall not exceed the number the space will accommodate at 75 square feet per child:

- 2. The entire play area is enclosed by a fence having a minimum height of at least four feet and constructed in such a manner that maximum safety to the children is ensured; and
- 3. No outside sign in excess of four square feet in area shall be permitted. The sign shall be non-illuminated; and

- 4. The construction and operation of such facilities shall comply with all applicable federal, state or local codes; and
- 5. An off-street dropoff/pickup area shall be provided.
- 6. The center shall not have access to a local road.
- 7. If located in an R-45A or R-45B District the requirements of section 4.1.4 apply to this use.

Section 4.1.6 - Commercial kennels.

Commercial kennels shall be sited to meet the following requirements:

- 1. Such uses shall be set back a minimum of 100 feet (measured in a straight line) from the property line on which the use is located.
- 2. Such uses shall be located a minimum of 500 feet (measured structure to structure) from any religious institution, school, historical place, park, residential use, or day care center.
- 3. To minimize any potential negative impacts from this type of use, noise abatement techniques shall be used in the construction of such facilities.
- 4. A Type 2 buffer yard, as defined in Chapter 12, shall be installed along all property lines. The buffer yard shall contain plants which, when mature, shall buffer all parts of the site from public view. All plants used for the buffer yard shall be evergreens.
- 5. If located in an R-45A or R-45B District the requirements of section 4.1.4 shall apply.

Section 4.1.7 - Convenience centers.

- Reserved.
- 2. Facilities shall be located a minimum of 500 feet away from any religious institution, school, historical place, public park, day care center, or existing residential use or district.
- 3. All buildings and structures involved in the operation of this type of facility shall be a minimum of 75 feet from the centerline of any public road. All recyclable materials shall be kept behind all buildings and structures involved in the operation. Such parcels shall have direct access to a collector or arterial street. Access roads/easements shall maintain a minimum travel surface of 18 feet and have a width of 30 feet at the entrance intersection with a collector or arterial street so as to accommodate truck traffic.
- 4. Facilities shall be screened by a Type 4 buffer yard, as defined in Chapter 12. Where the required buffer yard is to be installed adjacent to a residential district or use, all plants used to meet this requirement shall be evergreens.
- 5. All exterior storage of material shall be in sturdy containers or enclosures which are secured and maintained in good condition, or shall be baled or palletized. Storage containers for flammable material shall be constructed of nonflammable material. Materials such as woodchips or other large bulky items shall be exempt from having to be placed in containers or enclosures.
- 6. Sites shall be maintained free of litter and all other undesirable materials, shall be cleaned of loose debris on a daily basis, and shall be secured from unauthorized entry and removal of materials when attendants are not present.

- 7. Space shall be provided on-site for customers to circulate, park and deposit recyclable materials and solid waste.
- 8. Donation areas shall be kept free of litter and any other undesirable material. The containers shall be clearly marked to identify the type of material that may be deposited. The facility shall display a notice stating that no material shall be left outside the recycling containers.
- 9. All applicable permits shall be obtained from the SCDHEC and any other permitting agency.

(Ord. No. 1073, § 1, 12-29-10)

Section 4.1.8 - Home occupations.

Home occupations shall comply with the following requirements:

- 1. Shall not have an adverse impact on the surrounding neighborhood.
- 2. Shall not display goods, stock in trade or other commodity outside of a fully enclosed structure.
- 3. The on-site retail sales of goods not produced on-site is prohibited.
- 4. No more than one (1) person who does not reside on the site shall be employed in the business.
- 5. The operation shall not create any objectionable noise, fumes, order, dust or electrical interference.
- 6. No more than 25 percent of the total gross floor area of the residential building shall be used for the home occupation or more than 1,000 square feet of gross floor area, (whichever is less).
- 7. Can only use vehicles which are primarily used as passenger vehicles in connection with the home occupation.

Section 4.1.9 - Hotel/motel.

Motels and hotels, provided that:

- 1. The lot size is a minimum of one acre:
- 2. The sole means of ingress and egress shall be via an arterial road;
- 3. The property shall have a minimum two-hundred foot (200) frontage on an arterial road;
- 4. Any building on the site must be a minimum of two hundred (200) feet from any residential district; and
- 5. When adjacent to residentially used or zoned property, outdoor lighting is required to be installed so that light shall not shine or reflect directly onto the adjacent property.
- 6. When adjacent to residentially used or zoned property a Type "3" buffer yard shall be installed along all property lines abutting a residentially used or zoned property.

Section 4.1.10 - Livestock auction houses.

Livestock auction houses shall be sited a minimum of 500 feet (measured in a straight line) from the property line on which the use is located.

Section 4.1.11 - Motor vehicle related businesses.

- 1. All businesses which work on motor vehicles and/or store motor vehicles on site for any period of time, such as a junkyards, garages, wrecking services, etc. shall be required to be screened from public view by installing a Type 2 Buffer yard around the perimeter of all the property which is between the building on the site and the street right-of-way from which the site has its main access. If there is no building on the site, the same type fence shall be required to be installed in a manner which shall completely screen all vehicles from the street right-of-way. This provision shall not apply to new or used car dealerships.
- 2. The side and rear property lines shall be screened as is deemed appropriate by the staff of the building and zoning department. For example, if all the adjoining property is vacant, no fence would be required. However, if these sites were developed for residences at a later time, the owner of the property would be required to install the appropriate fencing prior to the residence being occupied.

Section 4.1.12 - Manufactured homes.

The setup, location, and movement of a manufactured home not in a manufactured home park shall meet the following requirements:

1. As used in this ordinance, the term "mobile home" or "manufactured home" shall be interpreted to mean a vehicle or structure that is designed to be movable on its own chassis for conveyance on public thoroughfares and designed without a permanent foundation. A manufactured home may consist of one or more components that can be disassembled for towing purposes or two or more units that can be towed separately, but designed to be attached as one (1) integral unit. All manufactured homes produced since June 15, 1976, must be inspected by the Department of Housing and Urban Development during the manufacturing process and display an emblem of approval on the manufactured home. No manufactured home produced before June 15, 1976, shall be brought into and located in the county. The manufactured home dimensions shall be a minimum of 32 feet in length and eight feet in width. Placement of this type of dwelling/residence on a permanent foundation does not constitute a change in its classification. For the purpose of this ordinance, a manufactured home used for business purposes or classrooms are subject to the requirements of subsection 6. of this section.

2. Scope and jurisdiction.

- a. Sworn law enforcement personnel of the county shall assist the building and zoning department in the enforcement of all applicable requirements of this section and ordinance upon reasonable request and notification.
- b. Upon notice from the building and zoning official, placement of a manufactured home contrary to the provisions of this section shall be immediately ceased. Such notice shall be in writing and shall be transmitted to the mover of the manufactured home in violation. Notice shall state the violation and the conditions under which the violation shall be corrected. Written notice shall be sufficient if mailed by registered mail, hand delivered, or accepted by an agent or relative of the owner of the manufactured home in violation.

c. It shall be unlawful for any public utility to provide service to any manufactured home where a permit is required under this ordinance prior to the issuance of required permit(s) or to maintain any such service upon notification by the building and zoning official that such violation was made against the provisions of this ordinance. This service restriction includes temporary connections for installation purposes.

3. Permit administration.

- a. It shall be unlawful for any person to place a manufactured home on a lot without filing an application with the building and zoning department and obtaining the necessary permit. Each application for a permit shall be made on a form required by the building and zoning department. Part of this process includes a site inspection and a verification of the assigned 911 address. Such a permit shall be valid for six months from the day it is issued.
- b. The building and zoning department shall make every reasonable effort to assist an applicant in completing the application forms; however, the applicant for such a permit is fully responsible for supplying and entering complete and accurate information on the application forms. If the application is deemed incomplete, inaccurate, or nonconforming to the provisions of this or other pertinent ordinances, the building and zoning department may reject such application in writing and indicate what action the applicant must take to comply with these regulations.
- c. Upon approval of a manufactured home permit involving placement, the building and zoning department shall issue a placement decal or card which shall be permanently affixed to the manufactured home by the owner. Upon approval of a manufactured home involving movement within or from Lancaster County, the building and zoning department shall issue a moving permit which shall be conspicuously displayed on the rear of the manufactured home while it is being moved.

4. Permit fees.

- a. No permit shall be issued by the building and zoning department until the appropriate fee for the placement/setup/moving of any manufactured home or the appropriate fee for moving any manufactured home, out of the county, has been paid in full.
- b. When, as a result of incomplete applications, violations, or errors of permit holder/applicant, additional inspections must be performed, the permit holder/applicant shall pay an additional fee of \$25.00 for each additional inspection thereafter.
- c. Where any activity regulated by this ordinance is commenced prior to issuance of the required permits, the applicable permit fee shall be doubled.
- d. The Lancaster County School District shall be exempt from paying the fees established by this subsection only.
- e. If a manufactured home is located on a parcel without meeting all the regulations contained in this ordinance, then the mover of the manufactured home (not the property owner) shall be fined accordingly and it shall be the responsibility of the mover to correct the situation. Such a mover may also be fined for any other reason the building and zoning official believes is the responsibility of the mover.

5. Requirements.

- a. Such structures shall be occupied as residences unless otherwise specified by this ordinance.
- b. One (1) manufactured home and one (1) single-family detached home shall be allowed to occupy the same lot provided one (1) of the homes shall be owner occupied and each home shall have separate and independent utility (i.e., electric, gas, water, sewer) facilities situated on a minimum lot size of 1.5 acres (65,340 square feet). One of the two (2) units shall be maintained as an owner occupied unit and only one (1) of these two (2) structures shall be a manufactured home. At no time shall both units become rental units.
- c. The manufactured home shall not be located within the required yard space of the single-family dwelling and at least 20 feet from the other dwelling or manufactured home.
- d. All tires and rims shall be removed from the manufactured home. The only exception to this requirement shall be for a manufactured home which is used for a temporary dependent care residence, or for a temporary emergency, construction or repair structure. To receive this exemption, the conditions for either a temporary dependent care residence or a temporary emergency, construction, or repair structure shall be met prior to any permits being issued.
- e. Manufactured homes shall be supported, properly tied down and underpinned as specified by the Uniform Standards Code for Manufactured Housing and Regulations (SC Code Ann. Section 40-29-10 et seq., at amended) and (23 SC Code Ann. Regs. 19-425 et seq.).

The manufactured home shall be completely underpinned at the time the last inspection is conducted and prior to the final power permit being issued. If this is not complete, the certificate of completion shall not be issued by the building and zoning department.

Manufactured homes shall be oriented on the site so that the front door faces the road from which the site has its access. This requirement shall apply to all lots located in manufactured home parks and subdivisions.

Exception to the above is:

- f. Manufactured homes placed in the floodplain shall meet the floodplain ordinance requirements.
- g. Properly constructed steps and landings with minimum dimensions of three (3) feet by three (3) feet of masonry or weather resistant material shall be installed at each entrance and exit (as per section 1012.1.6 or 1997 SBC). If a manufactured home is installed at a height that any portion of the land or deck is more than thirty (30) inches above finished grade, handrails and guardrails of weather resistant material must be provided with a minimum height of thirty-six (36) inches and no more than four (4) inches between pickets (as per 1997 SBC).
- h. Manufactured homes shall be connected to properly installed sewage disposal systems, potable water supply, approved electric service supply as per the most recent edition of SCDHEC regulations, Standard Plumbing Code, National Electric Code, etc. All utilities shall

be either overhead or underground.

- i. All existing manufactured homes, including those that do not meet the formal definition of such, shall meet the requirements specified by this section within 180 days of the effective date of this ordinance.
- Manufactured homes shall not be used for storage space.
- k. Manufactured homes built prior to June 15, 1976 shall not be disconnected from power and then reconnected. Therefore, such manufactured homes shall not be moved from one site in the county to another.
- 6. Modular units as special occupancies.
 - a. Modular units may be used for temporary offices provided the owner or lessee obtains a "temporary certificate of zoning compliance" and "certificate of occupancy" from the building and zoning department and is registered with the county. The placement and installation of modular homes for temporary use shall meet the requirements of such use as per the standard applicable codes or ordinances.
 - b. Provided the use or location does not violate provisions of this ordinance and the owner or lessee obtains a "certificate of occupancy" signed by the building and zoning department, a modular unit, intended and used as an office or other relevant approved use, may be used for said purposes and must be registered with Lancaster County and meet all applicable standard codes for use. Said use shall meet all applicable standard codes for occupancy.
 - c. A modular unit may be used as a classroom by a school or religious institution, provided it is registered with Lancaster County and meets all applicable requirements of the standard codes and ordinances of the county.
- 7. Moving permits required.
 - a. Moving permits shall be filed on forms provided by the building and zoning department. The moving permit shall be issued when all taxes due on the manufactured home have been paid. The permit shall be valid for 15 days with an extension approved by the building and zoning department for just cause; however, any such extension shall not exceed 15 days.
 - b. The manufactured home moving permit shall accompany the manufactured home while it is being moved. The permit shall be displayed on the rear of the manufactured home in a conspicuous place. It shall be the duty of the transporter that the requested moving permit is properly displayed and accompanies the manufactured home while in transport.
 - c. A manufactured home dealer or other agency repossessing a manufactured home under a security agreement, or upon receipt of a legal repossession document from the principal of the security agreement, may move a manufactured home from where it is located and relocate it to a secure location within Lancaster County until a moving permit can be obtained, not to exceed 15 days. Under no circumstances shall the manufactured home leave the boundaries of the county until all taxes and other county liens are satisfied and a moving permit is issued.
 - d. When a dealer moves a manufactured home for rental purposes.

8. Permits not required.

- a. A manufactured home dealer brings a Class A or Class B manufactured home into Lancaster County for resale purposes. No Class C manufactured homes shall be allowed to be moved into and located in the county.
- b. A manufactured home dealer delivers a manufactured home that is sold from the sales lot.

(Ord. No. 323, 2-1-99; Ord. No. 362, 1-31-00; Ord. No. 412, 12-18-00; Ord. No. 561, 8-25-03; Ord. No. 1023, 4-12-10; Ord. No. 1035, 6-7-10)

Section 4.1.13 - Manufactured home parks.

(See Chapter 13 for development regulations.)

Section 4.1.14 - Manufactured home storage lots.

- 1. Such lots shall be screened from public view and from all adjoining lots by a Type 2 buffer yard. All plants shall be evergreens.
- 2. Manufactured homes built prior to June 15, 1976 shall not be allowed to be stored on any property within the county.

(Ord. No. 323, 2-1-99)

Section 4.1.15 - Manufactured home subdivisions.

Manufactured home subdivisions are allowed only in those districts where individual manufactured homes are allowed. Lots and yards within a manufactured home subdivision shall be developed to the standards of the zoning district in which it is located. All manufactured homes located in such developments shall also comply with all applicable conditions contained in section 13.13 of this ordinance.

(Ord. No. 323, 2-1-99)

Section 4.1.16 - Manufacturing/processing uses.

1. *Purpose*. The purpose of this section is to prevent land or buildings from being used or occupied in any manner so as to create any dangerous, injurious, noxious or otherwise objectionable or hazardous condition. Toward this end, the operational characteristics of all nonresidential uses shall be measured for conformance with the limitations of this section.

2. Vibration.

No vibration shall be produced which is transmitted through the ground and is discernable without the aid of instruments or at any point beyond the lot line; nor shall any vibration produced exceed the following particle velocity levels, measured with a vibration monitor in inches per second at the nearest:

Steady-State Vibration Limits

Peak Particle Velocity

	(Inches Per Se	cond)
	Daytime	Nighttime
Residential property line	0.03	0.01
Non-residential property line	0.06	0.06

Nighttime limits shall be considered to prevail from 7:00 p.m. to 7:00 a.m. local time.

Reserved.

4. Noise. All noise shall be muffled so as not to be objectionable due to intermittence, beat frequency or shrillness. In no event shall the sound pressure level of noise radiated continuously from a facility exceed at the lot line the value given in Tables I and II in any octave band or frequency. Sound pressure level shall be measured with a sound level meter and an octave band analyzer that conform to specifications published by the American Standards Association. Maximum permissible sound pressure levels at the lot line for notice radiated continuously from a facility between the hours of 7 p.m. and 7 a.m.

TABLE I. NIGHTTIME SCHEDULE

	Sound Pressure Levels (In Decibels)					
Frequency Band (In Cycles Per Second)	At Non-residential Lot Line	At Residential Lot Line				
20—74	69	65				
75—149	60	50				
150—299	56	43				
300—599	51	38				
600—1,199	42	33				
1,200—2,399	40	30				
2,400—4,799	38	28				
48,00—10,000	35	20				

TABLE II. DAYTIME SCHEDULE

Maximum permissible sound pressure levels at the lot line for noise radiated from a facility between the hours of 7 a.m. and 7 p.m. shall not exceed the limits of the preceding table except at specified and corrected below:

Type of Operation in	Correction
Character of Noise	(In Decibel*)
Daytime operation only	plus 5
Noise source operates less than 20% of any one-hour period	plus 5
Noise source operates less than 5% of any one-hour period	plus 10

Noise source operates less than 1% of any one-hour period	plus 15
Noise of impulsive character (hammering, etc.)	minus 5
Noise of periodic character	minus 5
*Apply to the preceding table one of these corrections only.	

Noise emanating from construction activities between 7 a.m. and 7 p.m. shall be exempt from these requirements.

- 5. Air pollution. The emission of visible smoke, dust, dirt, fly ash, particulate matter from any pipes, vents, or other openings, or from any other source into the air, shall comply with the regulations of the South Carolina Pollution Control Authority or any other appropriate state agency. Air pollution emanating from construction activities between 7 a.m. and 7 p.m. shall be exempt from these requirements.
- 6. Reserved.
- 7. Reserved.
- 8. Toxic matter. The measurement of toxic matter shall be at ground level or habitable elevation and shall be the average of any 24-hour sampling period. The release of any airborne toxic matter shall not exceed the quantities permitted by SC DHEC or any other appropriate agency. If a toxic substance is not contained in said listing, the applicant shall satisfy the planning commission that the proposed levels will be safe to the general population.
- 9. *Exterior illumination.* All operations, activities, and uses shall be conducted so as to comply with the performance standards governing exterior illumination prescribed below.

In general, the pattern of light pooling from each light source shall be carefully considered to avoid throwing light onto adjacent properties. Light sources visible in residential or medical areas shall comply with light intensities indicated in Column A below. Light sources visible in commercial or industrial areas shall comply with light intensities indicated in Column B below.

	Column A	Column B
Bare incandescent bulbs	15 watts	40 watts
Illuminated buildings	15 ft. candles	30 ft. candles
Backlighted or luminous back	150 ft. lamberts	250 ft. lamberts
ground signs		
Outdoor illuminated signs	25 ft. candles	110 ft. candles
& poster panels		
Any other un-shielded sources,	50 candela per sq. centimeter	50 candela per sq. centimeter
intrinsic brightness		

Illumination shall be measured from any point outside the property. Illumination levels shall be measured with a photoelectric photometer having a spectral response similar to that of the human eye,

following the standard spectral luminous efficiency curve adopted by the International Commission on Illumination.

(Ord. No. 1034, 6-7-10)

Section 4.1.17 - Mini-warehouses.

Due to the need to better integrate mini-warehouses into the fabric of the community, all such uses shall meet the following requirements:

- 1. Mini-warehousing sites shall be at least two acres but not more than ten acres in size.
- 2. Lot coverage of all structures shall be limited to 50 percent of the total area.
- 3. Vehicular ingress/egress shall be limited to one point for each side of property abutting on a street lot line.
- 4. No business activities conducted by tenants other than rental of storage units shall be permitted on the premises.
- 5. There shall be no outside storage of materials.
- 6. None of the side walls of the structure shall be over 12 feet in height.
- 7. All outdoor lighting shall be installed so as not to exceed ten (10) feet in height and shall not shine or reflect directly onto any surrounding properties.
- 8. A Type 3 buffer yard, as defined in Chapter 12, shall be installed along any street frontage and any property line which abuts a residential district. All plants used to meet the requirements of the Type 3 buffer yard shall be evergreens.
- 9. When abutting any nonresidential district, a minimum of a Type 1 buffer yard shall be installed.
- 10. Individual storage units may be used for the storage of goods which are associated with any office, retail, or other business use. However, no business shall be allowed to operate from an individual storage unit.
- 11. The storage of radioactive materials, explosives, flammable, or hazardous chemicals shall be prohibited.
- 12. No parking spaces or drive aisles are allowed in any required side or rear yard.
- 13. The minimum drive aisle width shall be 24 feet in width and the entrance shall be setback a minimum of 75 feet from the right-of-way or easement line of the street from which the site has access.
- 14. The entrance to the site shall have a gate. The gate shall be setback a minimum of 75 feet from the right-of-way or easement line of the adjacent street. This space is required to allow for one (1) tractor trailer and one (1) automobile to be stacked while waiting to open the front gate.
- 15. The storage of vehicles on a temporary basis is only allowed to the rear of all the buildings on site.

Section 4.1.18 - Private or commercial horse stables.

Due to environmental consequences of keeping horses in residential areas, and elsewhere in the community, horse stables, pens, and areas for keeping horses shall meet the following requirements:

- 1. The lot or parcel shall have a minimum width of 100 feet and contain a minimum of two acres if the horse is to be fed by the property owner or a minimum of three acres if the horse is to graze. If the horses are to be fed by the property owner, an additional minimum one-half acre (21,780 square feet) for each horse or horse stall located on the site is required. If the animals are to graze, the minimum additional area required per horse shall be to three acres (130,680 square feet).
- 2. The lot must be designed and maintained to drain so as to prevent ponding and propagation of insects.
- 3. The lot must be designed and maintained so as to prevent the pollution by drainage to adjacent streams and other water bodies.
- 4. The premises must be maintained in a sanitary condition through the proper use of lime and pesticides.
- 5. The premises must be maintained by keeping manure piles in covered containers at least 50 feet from any dwelling or any pool, patio or other residential structure on an adjoining lot and from any property line. This requirement shall apply to residential uses in the residential zoning areas only.
- 6. If the animals are in a contained area, all manure shall be removed at least twice daily from confined areas so as to prevent propagation of flies and creation of odors. Owners of horses in confined areas are encouraged to use a Rabon supplement as this will reduce the propagation of flies.
- 7. All grain on the lot must be stored in rodent-proof containers.
- 8. The exercise and training areas on the lot shall be dampened so as to prevent dust.

Section 4.1.19 - Recycling facilities, convenience centers, and resource recovery facilities.

Due to the need for convenient collection locations and the potential for conflict with existing development and environmental amenities, all such uses shall meet the following requirements:

- Reserved.
- 2. Facilities shall be located a minimum of five hundred (500) feet away from any religious institution, school, historical place, public park, day care center, or existing residential use or district.
- 3. All buildings and structures involved in the operation of these facilities shall be a minimum of three hundred (300) feet (measured in a straight line) from the centerline of any public road. Such parcels shall have direct access to a collector or arterial street. Access roads/easements shall maintain a minimum travel surface of eighteen (18) feet and have a width of thirty (30) feet at the entrance intersection with a collector or arterial street, so as to accommodate truck traffic.

- 4. Facilities shall be screened by a Type 4 buffer yard, as defined in Chapter 12. Where the required buffer yard is to be installed adjacent to a residential district or use, all plants used to meet this requirement shall be evergreens.
- 5. All exterior storage of material shall be in sturdy containers or enclosures which are secured and maintained in good condition, or shall be baled or palletized. Storage containers for flammable material shall be constructed of nonflammable material. Materials such as woodchips or other large bulky items shall be exempt from having to be placed in containers or enclosures.
- 6. Sites shall be maintained free of litter and all other undesirable materials, shall be cleaned of loose debris on a daily basis, and shall be secured from unauthorized entry and removal of materials when attendants are not present.
- 7. Space shall be provided on site for customers to circulate, park, and deposit recyclable materials and solid waste.
- 8. Donation areas shall be kept free of litter and any other undesirable material. The containers shall be clearly marked to identify the type of material that may be deposited. The facility shall display a notice stating that no material shall be left outside the recycling containers.
- 9. All applicable permits shall be obtained from the SCDHEC and any other permitting agency.

(Ord. No. 1073, § 2, 12-29-10)

Section 4.1.20 - Site built or modular single-family detached house located in the commercial, industrial or multiple-family districts.

In any area located from the parcels fronting on the southern right-of-way line of S.C. Highway 5 northward to the state line, eastward to the Union County (NC) line and westward to the York County line and which are zoned MF, B-1, B-2, B-3, B-4, I-1 and I-1 Light Industrial/Agricultural District, where both water and sewer is available and the parcel to be subdivided contains at least ten acres, subdivisions shall be allowed and shall comply with the requirements for single-family homes located in the R-15P, Moderate Density Residential/Agricultural/ Panhandle District.

In any other area of the county which is zoned MF, B-1, B-2, B-3, B-4, I-1 or I-2 Heavy Industrial District, where both water and sewer is available and the parcel to be subdivided contains at least ten acres, subdivisions shall be allowed and shall comply with the following requirements:

- 1. Density: The minimum lot shall be as outlined below. The maximum density is two and one-half (2.5) dwelling units per acre. The total number of dwelling units allowed on the site shall be based on the gross acreage of the site. For example, a one hundred-acre parcel of land shall be allowed to have two hundred fifty (250) dwelling units built on the site.
- 2. Lot size: The maximum lot size allowed in these areas shall be three-fourth $(\frac{3}{4})$ of an acre. Minimum standard lot size is ten thousand (10.000) square feet.
- 3. Lot width and setback requirements:

Lot width:	70 feet
Front	30 feet

yard:	
Side	10 feet
yard:	

However, the side yard requirement may be reduced to zero (0) provided the following conditions are met:

- a. A windowless wall is placed on one side property line and the total side yard requirement is provided on the opposite side property line. For example, if a lot is sixty (60) feet in width, then a twelve-foot side yard would be required to be placed on the opposite property line from where the windowless wall is placed.
- b. The structure shall not encroach upon or be placed on the side yard property line adjacent to a street.
- c. Whenever a structure is located within four (4) feet of a side property line, a perpetual easement for wall and roof maintenance shall be provided on the adjacent lot. The minimum width of this maintenance access shall be four (4) feet. This easement shall be incorporated into each deed.
- d. Zero lot line development is only allowed in subdivisions where all of the lots shall use this technique.

Rear Yard, Principle Structure:	45 feet
Rear Yard	10 feet
Accessory	
Structure:	

- e. *From external streets:* The minimum setback from external streets shall be same as is prescribed in the underlying zoning district.
- f. Between buildings: The minimum distance between any two (2) buildings within this type of development shall be governed by the Standard Building Code. However, the director of emergency preparedness shall approve the fire protection measures for any development where the principal buildings are separated by less than twenty (20) feet.
- 5. Failure to achieve any of these provisions shall be sufficient reason for the planning commission to disapprove the subdivision request.

(Ord. No. 400, 4-8-02; Ord. No. 696, 10-3-05; Ord. No. 748, 5-1-06)

Section 4.1.21 - Reserved.

Editor's note— Former section 4.1.21 formerly contained regulations for solid waste storage and transfer facilities,

waste tire treatment sites, and composting facilities which derived Ord. No. 309, adopted Sept. 28, 1998. Identical provisions were also included as § 4.2.8. As § 4.2.8 has been amended the editor has reserved former § 4.1.21 to avoid potential conflicts. Please see § 4.2.8 of this UDO.

Section 4.1.22 - Stockyards, slaughter houses, commercial poultry houses, commercial meat production centers and swine lots.

Such uses shall meet the following requirements:

- 1. All buildings and structures involved in the operation of the aforementioned uses, including, but not limited to, animal barns and decomposition facilities shall be sited a minimum of 500 feet (measured in a straight line) from the property line on which the production unit is located, and on a parcel of land of no less than 100 acres.
- 2. Signs advertising such use shall be subject to the same regulations as would apply under the Chapter 10, Signs if the property is commercially zoned, except that in no case shall more than one (1) freestanding sign be erected and that sign shall not exceed 32 square feet in sign surface area.
- 3. All buildings and structures involved in the operation of the aforementioned uses, including, but not limited to, animal barns and decomposition facilities shall be sited a minimum of 100 feet (measured in a straight line) from any water supply (public or private), stream, or watercourse.
- 4. All buildings and structures involved in the operation of the aforementioned uses, including, but not limited to, animal barns and decomposition facilities shall be sited a minimum of 500 feet (measured in a straight line) from the centerline of any public road. Parcels upon which the production unit is located shall have direct access via road frontage or indirect access via recorded easement to a major local street. Access roads/easements shall maintain a minimum travel surface of 18 feet and have a width of 30 feet at the entrance intersection with a major local street, so as to accommodate truck traffic.
- 5. The minimum separation requirement between this use and the following uses shall be as follows:

Neighboring Use Separation	
Requirement (Ft.)	
A residential use	1,320
A religious institution	2,640
Public or private schools and educational facilities	2,640
Public parks and recreational facilities	2,640
Commercial meat production center	2,640
Commercial and industrial uses	2,640
Incorporated municipal limits within Lancaster County	5,280

6. At a minimum, the applicant shall submit at the time an application is submitted the following documents for review:

- a. Site inspection letter from SCDHEC stating that the site is suitable for the proposed operation;
- b. Aerial photographs showing the intended construction site(s) and manure spreading sites as well as notation of the type and size of the operation;
- c. Waste application contract form (SCDHEC Annex K) for all landowners consenting to have waste spread on their lands;
- d. A site specific waste application table from the Natural Resources Conservation Service stating that there are appropriate acres and crops to handle the expected quantity of waste.
- 7. Uses in this section shall obtain a zoning permit from the building and zoning department. As required in the Chapter 6, Permit Approval, of this ordinance, the applicant for a zoning permit for any use listed in this section which would produce any objectionable elements shall acknowledge in writing his understanding of the siting requirements of this ordinance and shall submit with the zoning permit application a compliance guarantee agreement to conform with such requirements at all times. Any violation of this compliance guarantee shall constitute a violation of this ordinance and shall be treated accordingly.

Section 4.1.23 - Temporary dependent care residences.

- 1. On any lot at least one and one-half acres (65,340 square feet) in size used for single-family residential purposes, the building and zoning official may issue a zoning permit to allow a manufactured home to be located on such a lot on a temporary basis under the following circumstances and conditions:
 - a. The applicant for the permit presents a written certificate from a licensed physician stating that, because of poor health, there is a need for the direct custodial care between the occupant(s) of the principal residence on such a lot and the occupant(s) of the manufactured home;
 - b. The occupants of the two (2) residences are related by blood or marriage or there is a legal guardianship relationship between them;
 - c. The applicant submits a letter from the Lancaster County water and sewer district that demonstrates that separate water and sewer facilities for the manufactured home have been installed.
- 2. Permits for temporary dependent care residences authorized under this section shall be valid for a period of 12 months from the date of issuance, except the building and zoning official may renew such a permit in three (3) month increments if a written certificate from a licensed physician is obtained which states there is still a need for direct custodial care between the occupant(s) of the principal residence on such a lot and the occupants of the manufactured home.
- 3. Temporary residences authorized under this section shall not be subject to the density and dimensional regulations of this ordinance, but shall be subject to applicable setback requirements.

Section 4.1.24 - Temporary emergency, construction, or repair residences.

Permits for temporary residences to be occupied pending the construction, repair or renovation of the permanent residential building on a site shall expire within twelve (12) months after the date of issuance, except that the building and zoning official may renew such permits in three (3) month

increments if he determines that such renewal is reasonably necessary to allow the proposed occupants of the permanent residential building to complete the construction, repair, renovation or restoration work necessary to make such building habitable. Temporary residences shall be removed within thirty (30) days of the completion of the project. The type of structures which shall be allowed as a temporary residence for purposes of meeting the requirements of this section shall only include manufactured homes, RV's, and travel trailers as long as the structure is set up to an approved septic system or to county water and sewer.

(Ord. No. 362, 1-31-00; Ord. No. 420, 2-5-01)

Section 4.1.25 - Temporary structures other than residences.

As indicated in the Table of Permissible Uses temporary structures used in connection with the construction of a permanent building or for some other non-recurring purpose are permissible with a zoning permit in all districts. However, all such uses shall meet the following requirements:

- 1. Permits for such uses shall expire automatically within the period established by the building and zoning official, and the expiration date shall be written on the face of the permit. In determining the initial period (which shall not exceed two years) the building and zoning official shall consider (among other relevant factors) the need for the temporary structure and the degree to which the temporary structure adversely affects adjoining or neighboring properties. Using similar criteria, the building and zoning official shall renew the permit for not more than two additional periods of not more than six months each.
- 2. Upon the expiration of a permit or when the original reason for the temporary structure no longer exists, whichever occurs first, the structure shall be removed within one week.

Section 4.1.26 - Wireless communications transmission facilities.

1. Preamble. The expansion of wireless communications technology has produced an increased need for antennae and the wireless communications transmission facilities to support them. The purposes of the Federal Telecommunications Act of 1996 are "To promote competition and reduce regulation in order to secure lower prices and higher quality services for American telecommunications consumers and encourage the rapid deployment of new telecommunications technologies."

The Lancaster County Council finds the rapid development of this technology is in the public interest. Therefore, the council desires to enact zoning regulations and other changes in public policy which will allow such services to be rendered in conformity with the Federal Telecommunications Act of 1996, to meet the goals of the county's comprehensive plan, which is entitled The New Millennium; A Comprehensive Plan for Lancaster County and Its Municipalities, and to serve and protect the public health, safety, convenience, order, appearance, prosperity, and general welfare pursuant to the South Carolina Code of Laws (1976) as amended. The County Council further finds the regulation of wireless communications transmission facilities will provide for the orderly protection and retention of limited public resources such as skylines and vistas.

2. Definitions.1.

a. Wireless communications transmission facilities. Wireless communications transmission facilities, as used in this ordinance, shall mean a tower, pole, or similar structure more than 30 feet in height erected on the ground or on a building or other structure, used primarily for the support of one or more antenna(e) which are used as support for any personal wireless services as defined

in the Federal Telecommunications Act of 1996 including cellular, personal communications services (PCS), paging equipment and similar services that currently exist or may in the future be developed. This term shall not include radio and television stations' antenna(e), residential television antenna, any antenna(e) which is part of a communication system used by a business to communicate with their employees or satellite dishes, etc.

- b. Concealed or camouflaged wireless communications transmission facilities. Wireless communications transmission facilities and associated equipment which are totally concealed within an architectural feature of a building, within a structure or camouflaged so it is architecturally indiscernible or located on a water tower or electrical high tension tower, etc.
- c. Fall zone. The area on the ground within a prescribed radius from the base of a wireless communications transmission facility within which there is a potential hazard from falling debris or collapsing material.
- d. Height. Height of a wireless communications transmission facility is the distance from the base of the wireless communications transmission facility to the top of the wireless communications transmission facility which shall include any antenna(e) that extends above the top of the wireless communications transmission facility.
- e. Personnel communications service. This technology is similar to traditional cellular technology. However, it operates over a network of smaller coverage cells, requires more facilities to cover an area, and uses lower radio frequencies to transmit data.
- 3. General provisions. The provisions contained within this section are intended to achieve a reasonable balance between public safety, health, convenience, appearance considerations, and the need to encourage flexible and efficient delivery of communications services. All applicable health, nuisance, noise, fire, building, and safety code requirements shall apply in addition to the provisions of this section. All zoning code provisions except those specifically superseded by this section shall also apply.
- 4. Concealed or camouflaged wireless communications transmission facilities. A concealed wireless communications transmission facility which is located within a structure such as a church steeple, or bell tower, or is attached to a bell tower, a water tank, an electrical high tension tower, etc. shall be exempt from these regulations except from those contained in this subsection. In addition, such wireless communications transmission facilities shall be a permitted use in all zoning districts, including residential.

If meeting the definition of a concealed or camouflaged wireless communications transmission facility requires any addition to an existing structure, any modification to any architectural feature of a structure or the construction of a structure to conceal or help camouflage a wireless communications transmission facility, the planning staff shall review the plans for such changes or new construction prior to any permit being issued. In reviewing such plans, staff shall at least consider whether the addition, feature or new construction is architecturally harmonious in such aspects as material, height, proportion, bulk, scale and design with the building or complex of which it is a part. If it is a stand-alone structure, it shall be reviewed as to whether the structure is harmonious with the surrounding area. In reviewing such a request, should the planning staff not consider the addition, modification or new construction to be a concealed or camouflaged wireless communications transmission facility, the applicant shall have the right to appeal this decision to the board of zoning appeals.

In any zoning district, communication antennae are a permitted use when attached to electrical high

tension towers or water tanks, etc. as long as:

- a. The increase in height to the structure shall not exceed 30 feet; and
- b. The applicant provides a satisfactory structural analysis of the electrical high tension tower or water tank, etc. prior to the issuance of any permit. Such an analysis shall be conducted by a structural engineer.
- 5. Wireless communications transmission facilities. The following requirements shall apply to all wireless communications transmission facilities except those listed in subsection 4.
 - a. Applicant shall demonstrate that the proposed tower is necessary. A proposed wireless communications transmission facility shall not be approved if an existing wireless communications transmission facility can be reasonably modified to meet the applicant's technical design requirements and will function as required by applicable regulations. If this cannot be accomplished, then prior to consideration of a permit for location on private property which must be acquired, the applicant must demonstrate that available alternative sites, whether publicly or privately owned and which are occupied by a compatible use, are unsuitable for the operation of the facility under applicable communications regulations, cannot meet the applicant's technical design requirements or are otherwise not reasonably available. Only after all preceding options are exhausted, shall the county consider an application for a new wireless communications transmission facility.
 - Setbacks: Wireless communications transmission facilities shall be allowed in all zoning districts, except a planned development district (PDD), based on the requirements of this section. The placement of a wireless communications transmission facility in a PDD shall be governed by the regulations establishing the PDD. Along all property lines, which are adjacent to residentially zoned property or property which is used for residential purposes, the setback requirements shall be equal to the height of the tower. This setback requirement shall also apply along any road rights-of-way/easements regardless of how the adjacent property is zoned or used. Residential districts shall include all "R" districts and the MF, Multiple-family, and MHP, Manufactured Home Park Districts. Where the adjacent property is zoned either commercially or industrially, the setback shall be equal to the fall zone for the tower or 60 percent of the height of the tower, (whichever would establish the greater setback requirement). The fall zone of the tower shall be determined by the applicant based on documentation from a structural engineer or the product representative. Subsequent to the establishment of a wireless communications transmission facility, no rezoning of an external lot shall increase the setback requirements of the existing facility. An adjacent property owner can waive this setback requirement but shall not be able to waive the setback requirement along a road right-of-way or easement if the property owner provides the building and zoning department with the following statement which has been signed and notarized:

"I understand that by signing this statement I am authorizing a wireless communications transmission facility, a cellular tower, to be built closer to my property line than is recommended by the county. Additionally, I understand there is a possibility that if the subject wireless communications transmission facility was to collapse, which is a rare occurrence, that a portion or all of the structure could fall on my property. Therefore, I relieve the county of any legal responsibility for any injury which may occur to an individual on my property or for any damage which may occur to any structure, vehicle, etc. which maybe located on my property and accept all responsibility for any damages

which may occur from allowing this structure to be built closer to my property line than is recommended by the county."

c. The only structures which will be allowed to be constructed within the setback requirements of a tower will be those structures which are considered to be accessory to the tower. Such structures would include, but not be limited to, storage, maintenance and equipment buildings.

d. Buffering requirements:

- (1) Existing mature trees and natural land forms on the site shall be preserved to the extent feasible. However, vegetation that causes interference with the transmission of an antenna or, if the vegetation inhibits access to any accessory structure on the site, it shall be allowed to be cut.
- (2) An eight-foot tall fence shall be installed around the outer perimeter of the base of the wireless communications transmission facility and any associated building(s). The fence shall enclose all structures comprising the facility into one defined area. A wall of any building which is used as part of the operation of a wireless communications transmission facility on the site may be used in combination with a fence to form this enclosure.
- e. Any tower up to 180 feet in height shall be designed and equipped with the technological and structural capability to accommodate at least two (2) wireless communications carriers. Any tower over 180 feet in height shall be designed and equipped with the technological and structural capability to accommodate at least three (3) wireless communications carriers. The applicant shall provide documentation from a structural engineer or the product representative showing the wireless communications transmission facility antenna capacity by type and number, and a certification that the wireless communications transmission facility is designed to withstand winds in accordance with ANSI/TIA 222 (latest revision) standards.
- f. Wireless community transmission facilities located near airports: If a structure is located in an area which could interfere with established flight patterns surrounding an airport, the height of the structure shall be reviewed by both the Federal Aviation Administration (FAA) and the Lancaster County Airport Commission. The airport commission will make its recommendation no more than 30 days after submittal. In determining if the proposed location of a wireless communications transmission facility could interfere with established flight patterns, the applicant shall contact both the FAA and the Lancaster County Airport Commission. A copy of the agencies' findings shall be provided to the Lancaster County Planning Department and the building and zoning department prior to any building permits being issued. The review shall be completed by the chairman of the commission.
- g. No wireless communications transmission facility subject to these provisions shall be erected having a separation of less than ½ mile (2640 feet as measured in a straight line) from an existing wireless communications transmission facility subject to these provisions. This provision may be waived upon certification by the applicant that technical reasons require a closer placement and staff agrees with their information.
- h. The owner of the tower shall make excess capacity not reserved for its own use available at fair market value to other providers and shall submit a notarized statement indicating their willingness to adhere to this condition.
- i. No permit application shall be considered for the location of a wireless communications

transmission facility on property not either leased or owned by the applicant or for which a contingent lease or purchase contract is in place. The amount of land either purchased or leased shall be equal to the amount of land necessary to meet the requirements of subsection 5.b. To show this requirement has been met, the applicant shall provide the county with a survey of the land and a copy of the lease or contract of sale or deed.

- j. On sites where there is an existing building, a wireless communications transmission facility shall not be located between the structure and any road right-of-way or easement for a road.
- k. Wireless communications transmission facilities shall not be lighted unless required by FAA regulations. When required, lighting shall conform with the minimum applicable FAA regulations.
- I. Wireless communications transmission facilities shall contain only equipment meeting applicable FCC regulations.
- m. Wireless communications transmission facilities shall be a blending color such as light gray, unless otherwise prescribed by FAA regulations. A properly maintained and unpainted galvanized steel surface shall meet this requirement.
- n. A single sign, not exceeding two square feet in area, shall be placed in a visible location on the wireless communications transmission facility identifying the owner, date of construction, and a 24-hour emergency telephone number.
- o. Prior to issuing a permit, county officials may make use of technical services of any competent source of such services, to determine that all required standards are met.
- p. To assure the removal of a wireless communications transmission facility which ceases to be used for any telecommunications purpose, the wireless communications transmission facility owner shall submit to the county planning department a performance bond for each wireless communications transmission facility erected after the effective date of this section and a notarized statement stating the owner shall be responsible for the removal of such wireless communications transmission facility within 90 days of the owner providing staff notice that the wireless communications transmission facility is considered to be no longer in use. The performance bond shall be for an amount which is equal to 125 percent of the estimated cost of having the structure removed. The estimated cost shall be based upon written certification from the owner's engineer that the estimated amount is adequate to cover the cost of removal. A wireless communications transmission facility is considered to be no longer in use if it is not used for any telecommunications purpose for more than 120 days. The board of zoning appeals may grant additional time to the wireless communications transmission facility owner.
- 6. Appeals and variances. If the building and zoning official has denied an application or failed to act thereon within 60 days, unless extended by mutual agreement, the applicant may appeal to the board of zoning appeals. Such appeals, other appeals concerning interpretation or administration of this section, and appeals for a variance from the provisions of this section shall be made pursuant to the provisions of Chapter 8 of the Lancaster County Unified Development Ordinance. In addition to the authority and obligations conferred by the aforementioned chapter, the board of zoning appeals in considering a variance shall conform to the provisions of Section 4 of the Federal Telecommunications Act of 1996 requiring "substantial evidence contained in a written record" be provided prior to the denial of any variance requested, shall require that an applicant satisfy all provisions of this section except requirements for which a variance is approved and may impose additional conditions deemed necessary for the public health and safety and protection of adjacent property.

7. Application requirements. An application to the board of zoning appeals shall be completed and the applicable application fee paid. The fee for this application shall be the same fee charged for a standard variance application. This fee shall be in addition to any other building or permit fees. The planning director may waive portions of these application requirements which are found not to be applicable to a particular tower/antenna installation.

The application shall include the following elements:

- a. A site plan showing property boundaries, all zoning district boundaries in the area, required setbacks, existing structures, use of adjacent properties, the proposed tower location, site elevation, tower height, guy anchors, driveway(s), parking area(s), fencing and landscaping.
- b. Plans and specifications for the proposed wireless communications transmission facility including foundation, wind and ice loading, antennae and accessories, and any accessory structure(s).
- c. A current map or update for an existing map on file, showing the locations of all of the applicant's existing and proposed wireless communications transmission facilities within the county which are reflected in public records and serving any property within the county.
- d. Identification of the owners of all antennae and related equipment to be located on the site; written authorization from the site owner for the application; evidence that a valid FCC license for the proposed activity, if applicable, has been applied for; and a copy of FCC form 854 (Application for antenna structure registration), if applicable.
- e. Any additional information as may be required by the planning director or building official to determine that all applicable regulations shall be met, including certifications by the applicant or other documentation evidencing compliance with the provisions of this section.

(Ord. No. 413, 12-18-00; Ord. No. 602, 4-5-04; Ord. No. 748, 5-1-06)

Section 4.1.27 - Motor vehicle dealer (used).

Motor vehicle dealer (used) shall be sited to meet the following requirements:

- 1. Such use shall be located in the B-2 Community Business District.
- 2. The lot shall not contain more than twenty-five (25) vehicles for sale or lease at any one time.
- 3. No stringed pennants or streamers, typically associated with automobile dealerships, shall be permitted.
- 4. Signage shall be in compliance with the B-2 zoning specifications.
- 5. Parking shall be provided which is in compliance with the standards contained in chapter 11 for car sales or rental.
- Proof shall be required that required licenses, fees, etc. have been obtained and paid.
- 7. A street yard shall be planted on the site in accordance with the requirements of Chapter 12, Landscaping Requirements.
- 8. Around the foundation of any building, shrubs shall be planted in an area which is a minimum

of fifteen (15) feet in width. The shrubs shall be appropriately spaced based on the width of the shrub at maturity. These shrubs shall be evergreens and shall meet the minimum requirements contained in Chapter 12, Landscaping Requirements, for the installation of shrubs.

9. A Type 3 buffer yard shall be installed along that portion of any property line which adjoins a residentially zoned or residentially used parcel of land.

(Ord. No. 539, 4-29-03)

Editor's note— Ord. No. 539, adopted April 29, 2003, amended the unified land development regulations by adding provisions designated as section 4.1.13. In order to avoid conflicts in section numbering the editor has redesignated the provisions of Ord. No. 539 as section 4.1.27

Section 4.1.28 - Body piercing establishment, body branding establishment, or tattoo parlors.

This use shall meet the following requirements:

- 1. The use shall be located no closer than 500 feet from the following uses:
 - a. Adult day care;
 - b. Child day care;
 - c. Educational institution (public or private);
 - d. Public facility (library, park, playground, recreational facility, etc.);
 - e. Religious institution;
 - f. Residential zoning district; and
 - g. Another body piercing establishment, body branding establishment or tattoo parlor.
- 2. Any permits required by SC DHEC, LLC and any other federal, state or local governmental department or agency which has rules and regulations governing these types of uses.

(Ord. No. 509, 8-16-02; Ord. No. 615, 8-2-04)

Section 4.1.29 - Mining and extraction operations.

Such uses shall meet the following requirements:

- 1. A mining permit shall be obtained from the South Carolina Department of Health and Environmental Control (DHEC) or any successor agency with authority to regulate mining prior to securing a zoning permit. The mining permit shall have been issued within six months of the date prior to the request for the zoning permit.
- 2. A copy of the reclamation plan as required by DHEC shall accompany the application.
- 3. The applicant shall provide the Lancaster County Building & Department with a copy of the approved application regarding mining/blasting activities and shall comply with all applicable requirements of S.C. Code Ann. Regs. 71-8302 et.seq. as they may be amended from time to time.

- 4. To protect against damage to structures from vibration, in all blasting operations the maximum peak particle velocity measured in any three mutually perpendicular directions shall not exceed one inch per second at the immediate location of any dwelling, public building, school, church, or commercial or institutional building. The minimum distance shall be determined by the current weight distance formula adopted under S.C. Code Ann. Regs. 89-150 F-G as they may be amended from time to time or any DHEC approved alternative methods of determining compliance such as seismographic monitoring.
- 5. Blasting operations shall be conducted in compliance with the contiguous property setback requirements of S.C. Code Ann. Regs. 89-150 H as it may be amended from time to time, or in compliance with any variance or other approval issued by DHEC. For the purposes of this subsection, a contiguous property shall not include parcels under the ownerships, lease, or control of the applicant, or where the property owner has signed a written waiver of this setback requirement.
- 6. In accordance with the requirements of R. 89-150 I as it may be amended from time to time, the DHEC mining permit shall specify a minimum blasting separation distance between the nearest point of blasting and any offsite structures in existence as of the date of the completed DHEC mine permit application.
- 7. Neither the maximum peak particle velocity requirement nor the minimum separation distance requirement apply to structures within the permitted area, within any area that is owned, leased, or controlled by the operator; or to any structure for which the owner has executed a waiver of damage claim.
- 8. A type 4 bufferyard shall be required along the margins of the property boundary. In the required bufferyard, existing trees and vegetation can remain in a natural state provided the property width of the type 4 bufferyard is maintained. Existing vegetation shall count toward the proposed buffer. Evergreen plants shall be used to meet this requirement.
- The site shall have direct access to either a collector or arterial street.
- 10. Access roads/easements shall maintain a minimum travel surface of 18 feet and have a width of 30 feet at the entrance intersection with a collector or arterial street. An area on the site shall be provided to accommodate vehicles entering the site so that no traffic waiting to enter the site will be backed up onto any public or private right-of-way or easement. This area shall be designated to handle the anticipated traffic.
- 11. The requirements of Chapter 4, Section 4.1.19, Manufacturing/processing uses, shall be applicable to any ore processing facility associated with mining operations.

(Ord. No. 979, 4-27-09)

Sec. 4.1.30 - Golf courses.

Due to the potential hazard of collisions between aircraft and birds, golf courses shall meet the following requirements

1. No portion of a golf course shall be located within five thousand (5,000) feet of the outermost boundaries of a parcel whereupon is situated a primary surface to which an instance of an Aviation Corridor Overlay is oriented, and which serves only propeller-driven aircraft not exceeding

twelve thousand five hundred ((12,500) pounds gross weight.

2. No portion of a golf course shall be located within ten thousand (10,000) feet of the outermost boundaries of a parcel whereupon is situated a primary surface to which an instance of an Aviation Corridor Overlay is oriented, and which serves propeller-driven aircraft exceeding twelve thousand five hundred (12,500) pounds gross weight and/or jet aircraft.

(Ord. No. 1018, 2-22-10)

Sec. 4.1.31 - Livestock production.

Due to the potential hazard of collisions between aircraft and birds, livestock production facilities shall meet the following requirements:

- 1. No portion of a livestock production facility shall be located within five thousand (5,000) feet of the outermost boundaries of a parcel whereupon is situated a primary surface to which an instance of an Aviation Corridor Overlay is oriented, and which serves only propeller-driven aircraft not exceeding twelve thousand five hundred (12,500) pounds gross weight.
- 2. No portion of a livestock production facility shall be located within ten thousand (10,000) feet of the outermost boundaries of a parcel whereupon is situated a primary surface to which an instance of an Aviation Corridor Overlay is oriented, and which serves propeller-driven aircraft exceeding twelve thousand five hundred (12,500) pounds gross weight and/or jet aircraft.

(Ord. No. 1018, 2-22-10)

Sec. 4.1.32. - Wastewater treatment facilities.

Due to the potential hazard of collisions between aircraft and birds, waste treatment facilities shall meet the following requirements:

- 1. No portion of a wastewater treatment facility shall be located within five thousand (5,000) feet of the outermost boundaries of a parcel whereupon is situated a primary surface to which an instance of an Aviation Corridor Overlay is oriented, and which serves only propeller-driven aircraft not exceeding twelve thousand five hundred (12,500) pounds gross weight.
- 2. No portion of a wastewater treatment facility shall be located within ten thousand (10,000) feet of the outermost boundaries of a parcel whereupon is situated a primary surface to which an instance of an Aviation Corridor Overlay is oriented, and which serves propeller-driven aircraft exceeding twelve thousand five hundred (12,500) pounds gross weight and/or jet aircraft.

(Ord. No. 1018, 2-22-10)

Section 4.2 - Purpose for special exceptions.

Due to the nature and potential impact of uses listed in this section, the board of zoning appeals shall call for and conduct a public hearing on any application to establish such a use in the county, having given at least 15 days notice of time and place of the hearing in a newspaper of general circulation in Lancaster County. Variances from these minimum requirements should not be approved unless the applicant can demonstrate a hardship would occur if the ordinance is applied to the site as written.

Section 4.2.1 - Automotive wrecking, and/or junk, and/or salvage yards.

Due to the environmental consequences and potential negative impact, unregulated open storage of junk or salvage material shall be restricted to junk and salvage yards, as defined by this ordinance, and shall meet the following requirements:

- 1. Such uses shall be located no closer than 2,640 feet to any residential zoning district, religious institution, school, historical place, public park, or day care center, or 1,320 feet to an existing residential use not in a residential zoning district (a residential structure on the site is exempt from this requirement).
- 2. No material which is discarded and incapable of being reused in some form shall be placed in open storage.
- 3. No material shall be placed in open storage in such a manner that it is capable of being transferred out by wind, water, or other causes.
- 4. All paper, rags, cloth and other fibers, and activities involving the same other than loading and unloading shall be within fully enclosed buildings.
- 5. All materials and activities not within fully enclosed buildings shall be screened with an opaque vegetative buffer yard equal to a Type 4 Buffer yard as defined in Chapter 12. The buffer yard shall contain plants which, when mature, shall buffer all parts of the site from public view. All plants used for the buffer yard shall be evergreens.
- 6. This use shall comply with the regulations of section 4.1.11 of this ordinance.

Section 4.2.2 - Adult uses.

It is the purpose of this section to regulate adult entertainment establishments to promote the health, safety, and general welfare of the citizens of the county. It is also the purpose of this ordinance to establish reasonable and uniform regulations to prevent the future incompatible location and concentration of adult establishments within the county. The provisions of this section have neither the purpose nor effect of imposing any limitations or restrictions on the content of any communicative materials, including sexually oriented materials. Similarly, it is not the intent or effect of this section to restrict access by adults to sexually oriented entertainment or materials protected by the First Amendment, or to deny the distributors and exhibitors of sexually oriented entertainment access to their intended market. Neither is it the intent or effect of this section to condone or legitimize the observance of adult entertainment or the distribution of sexually oriented material.

Section 4.2.2.1 - Classifications.

Adult entertainment uses and establishments include, but are not limited to, adult arcades, adult bookstores, adult cabarets, adult motels, adult motion picture theaters, adult theaters, adult video stores, escort motels, escort services, and sexual encounter centers, as defined in Chapter 19, Definitions, of this ordinance, and any other establishment which contains activities characterized by the performance, depiction, or description of specific anatomical areas or specific sexual activities.

Section 4.2.2.2 - Location.

Measurements of distance separation shall be as described in section 4.1.1 with no consideration given to intervening structures, roads, or land forms.

- 1. Adult establishments shall not be located closer than 2,640 feet from any:
 - Residential zoning district or structure used as a residence at time of the application for a special exception permit;
 - Religious institution;
 - c. Day care center;
 - d. Public or private educational facility;
 - e. Public library, playground, park, recreation facility, or other public facility;
 - f. Other adult establishment that provides adult entertainment or engages in the sale or rental of adult material as one of their principal business purposes;
 - g. Designated commercial, office, or industrial park.
- 2. No more than one (1) adult establishment shall be located on a parcel or in the same building, structure or portion thereof.
- 3. No other principal or accessory use shall occupy the same parcel, building, structure, or portion thereof with any adult establishment.

Section 4.2.3 - Construction, demolition, and land clearing debris landfills.

Use as a class two Landfill shall be permitted to operate in the county by both the county board of zoning appeals and SCDHEC and shall meet the following requirements:

- 1. Reserved.
- 2. Unless otherwise approved by the county, the site for a new class two landfill or expansion of an existing class two landfill shall meet the following standards:
 - a. The boundary of the fill area shall not be located within one thousand (1,000) feet of any residence, school, daycare center, church, hospital, or publicly owned recreational park area unless such features are included in the site design for a planned end use or otherwise approved by the county. The determination whether the new class two landfill or expansion of an existing class two landfill meets this requirement shall be made as of the date the use permit is requested.
 - b. The boundary of the fill area shall not be located within one hundred (100) feet of any property line. An exemption may be issued by the county upon receipt of written approval from adjacent property owners.
 - c. The boundary of the fill area shall not be located within two hundred (200) feet of any surface water that holds visible water for greater than six (6) consecutive months, excluding drainage ditches, sedimentation ponds and other operational features on the site.
 - d. Waste material shall not be placed on or within any property rights-of-way or within fifty (50) feet of underground or above ground utility equipment or structures, such as water lines, sewer lines, storm drains, telephone lines, electric lines, and natural gas lines, without the written approval of the impacted utility.

- 3. Use as a class two landfill shall be located on a parcel containing a minimum of one hundred (150) fifty acres.
- 4. No material shall be placed in open storage or areas in such a manner that it is capable of being transferred out by wind, water, or other causes.
- 5. All materials and activities shall be screened in such fashion as to substantially minimize visual contact between adjacent uses and to create a strong impression of spatial separation through the use of a Type 4 Buffer yard.
- 6. The site shall be restored and revegetated on completion of use as a landfill.
- 7. The parcel shall have direct access via road frontage to a collector street. Access road/easements shall maintain a minimum travel surface of eighteen (18) feet and have a width of thirty (30) feet at the entrance intersection with a collector street, so as to accommodate truck traffic.
- 8. Reserved.

(Ord. No. 1073, § 3, 12-29-10)

Section 4.2.4 - Reserved.

Editor's note— Ord. No. 979, adopted April 27, 2009, repealed former section 4.2.4 in its entirety which pertained to mining and extraction operations and derived from Ord. No. 309, adopted Sept. 28, 1998.

Section 4.2.5 - Motorized race and testing tracks.

Motorized race and testing tracks are declared by this ordinance to be incompatible with residential development. Additionally, such uses have the potential of negatively impacting many nonresidential uses. As a result, all such uses shall meet the following requirements:

- 1. No such use shall be located within one (1) mile of any residential use.
- 2. A Type 4 buffer yard shall be provided along all property lines which are adjacent to the racing/testing track and/or parking areas.
- 3. The site shall have direct access to either a collector or arterial street.

Section 4.2.6 - Pistol, rifle or skeet range.

All such uses shall meet the following requirements:

- 1. No such use shall be located within one (1) mile from any residential use, church, school or day care facility.
- 2. The use shall be oriented away from inhabited areas.
- 3. The site upon which the use is proposed shall be suitable in size and topography to insure the safety of area residents.
- 4. The range shall have a natural earth embankment a minimum of 10 feet in height placed behind all targets within the shooting range.

5. The hours of operation shall be as follows:

Monday through Saturday: 9:00 a.m. until sunset.

Sunday 1:30 p.m. until 6:00 p.m. or as stated on a request for a special event as outlined below.

Up to two times per calendar year, such businesses may be permitted to operate prior to 1:30 p.m. on Sundays for special events (i.e. state tournament). If such a business wants to hold a special event which would require the business to open before 1:30 p.m. on Sundays, the owner shall submit a written request to the planning director. This request shall include the name of the business, the business address, name of owner, what would be opening and closing time, and the date of the event. Additionally, the owner shall submit a list of all adjacent property owners so each can be sent a notice of which Sunday the business will open during hours other than between 1:30 p.m. and 6:00 p.m. Accompanying this list shall be an addressed, stamped envelope for each person on the list of adjacent property owners. Such businesses shall only be permitted to hold two special events per calendar year which require them to operate prior to 1:30 p.m. on Sunday.

The hours of operation listed in this subsection are the maximum hours such an operation shall be allowed to operate. During the special exception process, if the board of zoning appeals determines the surrounding conditions warrant more restrictive hours of operation, the board shall have the right to set such hours of operation.

(Ord. No. 323, 2-1-99; Ord. No. 470, 11-26-01)

Section 4.2.7 - Sanitary landfills.

Due to consideration for the public health and safety and potential pollution to the environment resulting from class three landfills, any such use shall meet the following requirements:

- 1. Reserved.
- Reserved.
- 3. New class three landfills and class three landfill expansions shall meet the following buffer zone requirements:
 - a. The boundary of the fill area shall not be located within five thousand two hundred eighty (5,280) feet of any residence, day-care center, church, school, hospital or publicly owned recreational park area unless such features are included in the site design for a planned end use or otherwise approved by the county. The determination whether the new class three landfill or expansion of an existing class three landfill meets this requirement shall be made as of the date the use permit is requested.
 - b. The boundary of the fill area shall not be located within two (200) hundred feet of any property line not under control of the owner or operator.
 - c. The boundary of the fill area shall not be located within two hundred (200) feet of any surface water that holds visible water for greater than six (6) consecutive months, excluding ditches, sediment ponds, and other operational features on the site.

- d. Waste material shall not be placed on or within any property rights-of-way or within fifty (50) feet of underground or above ground utility equipment or structures, such as water lines, sewer lines, storm drains, telephone lines, electric lines, and natural gas lines, without the written approval of the impacted utility.
- 4. The new class three landfill or class three landfill expansion shall be located on a parcel containing a minimum of two hundred fifty (250) acres.
- Reserved.
- 6. A drainage and sedimentation plan showing all off-site runoff shall accompany the request.
- 7. The site shall have direct access to either a collector or arterial street. Access roads/easements shall maintain a minimum travel surface of eighteen (18) feet and have a width of thirty (30) feet at the entrance intersection with a collector or arterial street, so as to accommodate truck traffic.
- 8. The facility shall be screened in such a fashion as not to be visible from off-site. A Type 4 Buffer yard, as defined in Chapter 12, shall be installed to meet this requirement. All plants used to meet this requirement shall be evergreens of sufficient size to accomplish buffering and screening at the time of installation.
- 9. No waste materials capable of being blown from the site shall remain uncovered or unsecured at the end of a work day.
- 10. The site shall be restored and revegetated on completion of use as a class three landfill.
- 11. All applicable permits shall be obtained from SCDHEC and any other permitting agency and all the agency regulations shall be followed.
- 12. Reserved.
- 13. Owners or operators of new class three landfills, existing class three landfills and expansions of existing class three landfills must meet the following airport safety requirements:
 - a. For landfills that are located within ten thousand (10,000) feet (3,048 meters) of the end of any airport runway used by turbojet aircraft or within five thousand (5,000) feet (1,524 meters) of the end of any airport runway used only by piston-type aircraft, the owner or operator of the landfill must demonstrate the landfill is designed and operated so that the landfill does not pose a bird threat to aircraft.
 - b. If the new class three landfill or the expansion of an existing class three landfill is proposed to be sited within a six (6) miles radius of the end of any airport runway used by turbojet or piston-type aircraft, the owner or operator must notify the affected airport and the Federal Aviation Administration.
 - c. The owner or operator must place the demonstration required by subsection 13.a. above in the operating record and notify the SCDHEC that it has been place in the operating record.
 - d. As used in this section:

- (1) Airport means a public use airport open to the public without prior permission and without restrictions within the physical capacities of available facilities; and
- (2) Bird hazard means an increase in the likelihood of bird and aircraft collisions that may cause damage to the aircraft or injury to its occupants.

(Ord. No. 1001, § 2, 11-2-09; Ord. No. 1073, § 4, 12-29-10; Ord. No. 1086, § 1, 5-23-11)

Section 4.2.8 - Solid waste storage and transfer facilities, waste tire treatment sites, and composting facilities.

All solid waste transfer facilities must meet the following requirements unless otherwise approved by the county:

- 1. Reserved.
- 2. Reserved.
- 3. The active waste handling area of a transfer facility shall not be located within one hundred (100) feet of any property line. The active waste handling area of a transfer facility shall not be located within two hundred (200) feet of any residence, school, hospital or recreational park area.
- 4. The solid waste transfer facility shall be located on a parcel containing a minimum of five (5) acres.
- 5. A Type 4 Buffer yard shall be installed along all property boundaries. All plants used to meet this requirement shall be evergreens.
- 6. All exterior storage of material shall be in sturdy containers or enclosures which are covered, secured, and maintained in good condition, or shall be balled or palletized. Storage containers for flammable material shall be constructed of nonflammable material.
- 7. The site shall be maintained free of litter and all other undesirable materials, and shall be cleaned of loose debris on a daily basis and shall be secured from unauthorized entry and removal of materials when attendants are not present.
- 8. Space shall be provided on site for vehicles to circulate, park, and deposit materials and solid waste.
- 9. All applicable permits shall be obtained from the SCDHEC and any other permitting agency and all the agency regulations shall be followed.
- 10. The solid waste transfer facility shall have direct access to either a collector or arterial street. Access roads/easements shall maintain a minimum travel surface of 18 feet and have a width of 30 feet at the entrance intersection with a collector or arterial street, so as to accommodate truck traffic.
- 11. Reserved.
- 12. Reserved.
- 13. Reserved.

(Ord. No. 1018, 2-22-10; Ord. No. 1073, § 5, 12-29-10)

Section 4.2.9 - Special events.

- 1. In deciding whether a permit for a special event should be denied for any reason specified in Chapter 6, Permit Approval, of this ordinance, or in deciding what additional conditions to impose, the board of zoning appeals shall ensure that the special event meets the following requirements:
 - a. The hours of operation allowed shall be compatible with the uses adjacent to the activity;
 - b. The amount of noise generated shall not disrupt the activities of adjacent land uses;
 - c. The applicants shall guarantee that all litter generated by the special event be removed at no expense to the county;
 - d. The parking generated by the event can be accommodated without undue disruption to or interference with the normal flow of traffic or with the right of adjacent and surrounding property owners to the beneficial use and enjoyment of their property.
- 2. In cases where it is deemed necessary, the building and zoning department shall require the applicant to post a bond to ensure compliance with the conditions of the special exception permit.
- 3. If the applicant requests the county to provide extraordinary services or equipment, or if the county otherwise determines that extraordinary services or equipment should be provided to protect the public health or safety, the applicant shall be required to pay to the county a fee sufficient to reimburse the county for the costs of these services. This requirement shall not apply if the event has been anticipated in the budget process and sufficient funds have been included in the budget to cover the costs incurred.

Section 4.2.10 - Video game machine establishments.

The placement or location of a video game machine establishment shall meet the following criteria:

- 1. No such establishment shall be located within 300 feet of another video game machine establishment.
- 2. No such video game machine establishment shall be permitted within 1,320 feet of any religious institution, residential zoning district, day care center, public or private educational facility, public library, playground, park recreational facility or other public facility.
- 3. No other principal or accessory use shall occupy the same parcel, building, structure, or portion thereof with any such establishment.
- 4. No more than one (1) such establishment shall be located on a parcel or in the same building, structure or portion thereof.

(Ord. No. 453, 10-1-01)

Section 4.2.11. - Turkey shoots.

1. No firing point may be located less than 200 feet in any direction from any property line.

- 2. The minimum distance from any firing point, measured in the direction of fire to the nearest property line, may not be less than 300 feel or 300 yards from a dwelling, school, church, or other occupied building, park or recreation area or any other type of public gathering place, whichever is greater. A turkey shoot, operated by a recognized gun club, meeting the standards as recommended by the National Rifle Association or an equally recognized firearms safety authority for the type of caliber of firearms being fired, are exempt from the above requirements.
- 3. The property where the turkey shoot is located must be fenced, posted or otherwise restricted so that access to the site is controlled to insure the safety of contestants, spectators and the public at large.
- 4. Operating hours for turkey shoots located within or immediately adjacent to residentially zoned areas is restricted to the hours of between 12:00 p.m. and 11:00 p.m. Friday and Saturday.
- 5. A special event on Thanksgiving Thursday and Sunday shall be allowed from 2:00 to 7:00 p.m.
- 6. A permit for a turkey shoot will be valid only for the months of October, November and December of the year in which it is issued.
- 7. The equivalent of two off-street parking spaces per firing point must be provided. Use should be oriented away from inhabited areas.
- 8. The site should have sufficient pellet restraints placed behind each target.
- 9. The site should be suitable in size.

(Ord. No. 470, 11-26-01)

Section 4.2.12 - Solid waste processing facilities.

All solid waste processing facilities must meet the following requirements unless otherwise approved by the county:

- 1. Solid waste processing facilities shall be adjacent to or have direct access to roads which are of all weather construction and capable of withstanding anticipated load limits.
- 2. No solid waste processing unit shall extend closer than one hundred (100) feet to any property line.
- 3. The active waste handling area of a solid waste processing facility shall not extend closer than two hundred (200) feet to residences, schools, hospitals and recreational park areas.
- 4. The solid waste processing facility shall be located on a parcel containing a minimum of five (5) acres.
- 5. A Type 4 Buffer yard shall be installed along all property boundaries. All plants used to meet this requirement shall be evergreens.
- 6. All exterior storage of material shall be in sturdy containers or enclosures which are covered, secured, and maintained in good condition, or shall be baled or palletized. Storage containers for flammable material shall be constructed of nonflammable material.
- 7. The site shall be maintained free of litter and all other undesirable materials, and shall be

cleaned of loose debris on a daily basis and shall be secured from unauthorized entry and removal of materials when attendants are not present.

- 8. Space shall be provided on site for vehicles to circulate, park, and deposit materials and solid waste.
- 9. All applicable permits shall be obtained from the SCDHEC and any other permitting agency and all the agency regulations shall be followed.
- 10. Solid waste processing facilities shall have direct access to either a collector or arterial street. Access roads and easements shall maintain a minimum travel surface of eighteen (18) feet and have a width of thirty (30) feet at the entrance intersection with a collector or arterial street, so as to accommodate truck traffic.

(Ord. No. 1073, § 6, 12-29-10)

Section 4.2.13 - Waste tires processing facilities (recycling).

All waste tire processing facilities must meet the following requirements unless otherwise approved by the county:

- 1. Waste tires processing facilities shall be adjacent to or have direct access to roads which are of all weather construction and capable of withstanding anticipated load limits.
- 2. No waste tires processing unit shall extend closer than one hundred (100) feet to any property line.
- 3. The active waste handling area of a waste tires processing facility shall not extend closer than two hundred (200) feet to residences, schools, hospitals and recreational park areas.
- 4. The waste tires processing facility shall be located on a parcel containing a minimum of five (5) acres.
- 5. A Type 4 Buffer yard shall be installed along all property boundaries. All plants used to meet this requirement shall be evergreens.
- 6. All exterior storage of material shall be in sturdy containers or enclosures which are covered, secured, and maintained in good condition, or shall be baled or palletized. Storage containers for flammable material shall be constructed of nonflammable material.
- 7. The site shall be maintained free of litter and all other undesirable materials, and shall be cleaned of loose debris on a daily basis and shall be secured from unauthorized entry and removal of materials when attendants are not present.
- 8. Space shall be provided on site for vehicles to circulate, park, and deposit materials and solid waste.
- 9. All applicable permits shall be obtained from the SCDHEC and any other permitting agency and all the agency regulations shall be followed.
- 10. Waste tires processing facilities shall have direct access to either a collector or arterial street. Access roads and easements shall maintain a minimum travel surface of eighteen (18) feet and

have a width of thirty (30) feet at the entrance intersection with a collector or arterial street, so as to accommodate truck traffic.

(Ord. No. 1073, § 7, 12-29-10)

Section 4.2.14 - Composting facilities.

All composting facilities must meet the following requirements unless otherwise approved by the county:

- 1. Composting facilities shall be adjacent to or have direct access to roads which are of all weather construction and capable of withstanding anticipated load limits.
- 2. A fifty-foot minimium buffer shall be required between all property lines and compost pad or storage area.
- 3. A two hundred-foot minimum buffer shall be required between compost pad or storage area and residences or dwellings.
- 4. The composting facility shall be located on a parcel containing a minimum of five (5) acres.
- 5. A Type 4 Buffer yard shall be installed along all property boundaries. All plants used to meet this requirement shall be evergreens.
- 6. All exterior storage of materials, other than yard waste, shall be in sturdy containers or enclosures which are covered, secured, and maintained in good condition, or shall be baled or palletized. Storage containers for flammable material shall be constructed of nonflammable material.
- 7. The site shall be maintained free of litter and all other undesirable materials, and shall be cleaned of loose debris on a daily basis and shall be secured from unauthorized entry and removal of materials when attendants are not present.
- 8. Space shall be provided on site for vehicles to circulate, park, and deposit materials and solid waste.
- 9. All applicable permits shall be obtained from the SCDHEC and any other permitting agency and all the agency regulations shall be followed.
- 10. Composting facilities shall have direct access to either a collector or arterial street. Access roads and easements shall maintain a minimum travel surface of eighteen (18) feet and have a width of thirty (30) feet at the entrance intersection with a collector or arterial street, so as to accommodate truck traffic.

(Ord. No. 1073, § 8, 12-29-10)

APPENDIX E

Soundcalc Output – Average L-Peak Results for STS Ambient Locations

STS&PropResults-L-Peak Average.TXT GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 1 - STS-HBC -

PROJECT - HGMWC- L

Peak Average

SOURCE # 3 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 14 SOURCE # 15 SOURCE # 17 SOURCE # 17 SOURCE # 18 SOURCE # 19 SOURCE # 19 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 22 SOURCE # 23 SOURCE # 24 SOURCE # 25 SOURCE # 30 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 37 SOURCE # 38 SOURCE # 37 SOURCE # 37 SOURCE # 38 SOURCE # 37 SOURCE # 44 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 47 SOURCE # 48 SOURCE # 49	SPL DBA DBA 27 26 52 51 26 43 20 43 20 43 20 43 43 43 43 43 43 43 43 43 4	DBA SPHERE 666 669 599 599 599 63 63 63 63 63 63 63 63 63 63 63 63 63	ATTENUATE PATH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FION FROM /1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF. DISTANCE BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E ATMOS. 111000000222222241111111111111111111111
TOTAL wo bkg 6	55 50 55 68					

COORDINATE LOCATIONS (Ft)

RECEIVER # 1 SOURCE # 2 SOURCE # 3 SOURCE # 5 SOURCE # 5 SOURCE # 6 SOURCE # 11 SOURCE # 12 SOURCE # 11 SOURCE # 11 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 13 SOURCE # 14 SOURCE # 15 SOURCE # 22 SOURCE # 25 SOURCE # 27 SOURCE # 26 SOURCE # 27 SOURCE # 27 SOURCE # 28 SOURCE # 33 SOURCE # 34 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 45 SOURCE # 4	STS-HBC Primary (SAG Mill Ball Mill Regrind M Regrind M Regrind M Regrind M Regrind M Regrind M ROSAHT 1 ROSAHT 2 ROSAHT 3 ROSADZ 3 ROSADZ 3 ROSADZ 1 ROSADZ 2 ROSADZ 3 ROSADZ 1 JPHT 3 JPHT 2 JPHT 3 JPDZ 1 JPHT 3 JPDZ 1 JPHT 3 JPHT 2 JPHT 3 JPHT 2 JPHT 3 JPDZ 1 JPHT 3 JPHT 2 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 3 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 3 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT 1 JPHT 3	1 4111234511123456		768 768 769 809 810 810 8119 7118 7117 7119 781 781 781 781 782 771 771 771 771 771 771 771 771 771 77	67426311860000000000000000000000000000000000	Y 47837 41378 41378 41219 41228 41229 4120	Z78665999999900000000000000000000000000000	DST 70679 77630 77769 77892 77892 77893 78761 138416 139763 139763 139763 139763 139763 139763 139763 139763 139763 139763 139763 14003 14103 14
PROJECTED OCTAVOCTAVE 31.5		125	250	500	100	00 2K	4K	8000
16K LINEAR 61 0	57	56	58	28	22	2 0	0	0

```
STS&PropResults-L-Peak Average.TXT

A-wt 22 31 40 49 24 22 1 1 -2

-7
```

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 2 - STS-KIP -

PROJECT - HGMWC

CONTRIBUTOR	SPL				REF. DISTAN	•
SOURCE # 2 SOURCE # 3 SOURCE # 5 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 15 SOURCE # 15 SOURCE # 17 SOURCE # 18 SOURCE # 19 SOURCE # 19 SOURCE # 22 SOURCE # 23 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 37 SOURCE # 37 SOURCE # 37	DB (Lin) DBA 29 54 29 54 29 46 20 46 20 46 20 46 20 40 20 40 20 40 20 40 20 40 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40	SPHERE 63 63 63 58 58 58 58 58 58 62 62 62 62 62 62 62 62 62 62 62 62 62	PATH 000000000000000000000000000000000000	/1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATMOS: 111000001111120000001111111112000000000
SOURCE # 20 SOURCE # 21	48 24	58	0	0	0	Ō
SOURCE # 19 SOURCE # 20	48 24 48 24	58 58	0 0	0 0	0	0 0
SOURCE # 23 SOURCE # 24	63 50 40 20	59 62	0	0 0	0 0	0 1
SOURCE # 26	40 20	62	0	0	0	1 1
SOURCE # 29	40 20 40 20	62 62	0	0 0	0 0	1
SOURCE # 31 SOURCE # 32	40 20 40 20	62 62	0	0	0 0	1 1
SOURCE # 34	40 20	62	0	0	0	1
SOURCE # 36	40 20	62	0	0	0	1 2
SOURCE # 38 SOURCE # 39	50 30 50 30	62	0 0	0	0 0	0 0
SOURCE # 40 SOURCE # 41 SOURCE # 42	50 30 48 29 48 29	62 64	0	0 0 0	0	0 0 0
SOURCE # 42 SOURCE # 43 SOURCE # 44	48 29 48 29 46 27	64 64 65	0 0 0	0	0 0 0	0 0
SOURCE # 45 SOURCE # 46	46 27 46 27	65 65	0 0 0	0 0	0	ŏ
SOURCE # 47 SOURCE # 48	51 31 51 31	62 62	0 0 0	0 0 0	0 0	0 0
SOURCE # 49 SOURCE # 50	51 31 42 21	62 61	0	0 0 0	0	0 1
SOURCE # 51 BACKGROUND	42 21 77 77	61	0	Ü	0	1

STS&PropResults-L-Peak Average.TXT 52 77

TOTAL wo bkg TOTAL w bkg 67 77

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

COORDINATE LOCATIONS (Ft)

		X	Υ	Z	DST
RECEIVER # 2	STS-KIP	79441	36121	570	
SOURCE # 1	Primary Crusher	79767	41378	548	5267
SOURCE # 2 SOURCE # 3	SAG Mill	80714	41311	556	5344
SOURCE # 3	Ball Mill	80812	41287	556	5345
SOURCE # 4	Regrind Mill 1	80996	41228	559	5338
SOURCE # 5	Regrind Mill 2	81013	41223	559	5338
SOURCE # 6	Regrind Mill 1 Regrind Mill 2 Regrind Mill 3	81031	41219	559	5340
SOURCE # 7	Regrind Mill 4	80991	41208	559	5317
SOURCE # 8	Regrind Mill 5	81008	41204	559	5319
SOURCE # 9	Regrind Mill 6	81026	41199	559	5319
SOURCE # 10	ROSAHT 1	71900	35000	680	7624
SOURCE # 11	ROSAHT 2	71850	34950	680	7681
SOURCE # 12	ROSAHT 3	71800	34900	680	7738
SOURCE # 13	ROSADZ 1	71750	34850	680	7796
SOURCE # 14	ROSADZ 2	71700	34800	680	7853
SOURCE # 15	ROSADZ 3	71650	34750	680 675	7911
SOURCE # 16 SOURCE # 17	ROSA BUA	71910	35010	675	7613
SOURCE # 17	ЈРНТ 1 ЈРНТ 2	78200 78150	39000 38950	680 680	3137 3111
SOURCE # 18	JPHT 3	78100 78100	38900	680	3087
SOURCE # 19	JPDZ 1	78050	38850	680	3065
SOURCE # 21	JPDZ 2	78000	38800	680	3043
SOURCE # 22	JPDZ3	78210	39010	680	3142
SOURCE # 23	JPBU	78210	39010	680	3142
SOURCE # 24	HOSAHT 1	77400	43400	720	7561
SOURCE # 25	HOSAHT 2	77350	43350	720	7526
SOURCE # 26	HOSAHT 3	77300	43300	720	7492
SOURCE # 27	HOSADZ 1	77250	43250	720	7459
SOURCE # 28	HOSADZ 2	77200	43200	720	7426
SOURCE # 29	HOSADZ 3	77150	43150	720	7394
SOURCE # 30	HOSABU	77410	43410	720	7568
SOURCE # 31	JOSAHT 1	80600	43700	630	7667
SOURCE # 32	JOSAHT 2	80550	43650	630	7610
SOURCE # 33	JOSAHT 3	80500	43600	630	7553
SOURCE # 34	JOSADZ 1	80450	43550	630	7497
SOURCE # 35	JOSADZ 2	80400	43500	630	7441
SOURCE # 36 SOURCE # 37	JOSADZ 3	80350 80610	43450 43710	630 630	7385 7678
SOURCE # 37	JOSABU CPDRILL 1	75500	33700	460	4626
SOURCE # 38	CPDRILL 1	75450 75450	33650	460	4695
SOURCE # 40	CPDRILL 3	75400 75400	33600	460	4764
SOURCE # 41	SPDRILL 1	74000	34800	480	5599
SOURCE # 42	SPDRILL 2	73950	34750	480	5660
SOURCE # 43	SPDRILL 3	73900	34700	480	5721
SOURCE # 44	SKPDRILL 1	75600	42100	420	7108
SOURCE # 45	SKPDRILL 2	75550	42050	420	7093
SOURCE # 46	SKPDRILL 3	75500	42000	420	7079
SOURCE # 47	LPDRILL 1	76900	39600	440	4310
SOURCE # 48	LPDRILL 2	76850	39550	440	4299
SOURCE # 49	LPDRILL 3	76800	39500	440	4290
SOURCE # 50	TSFHT	85300	37500	620	6019
SOURCE # 51	TSFDZ	85250	37450	620	5959
PROJECTED OCTA	VE LEVELS:	250 500 40	00 24	4	900

OCTAVE 31.5 63 125 250 500 1000 2K 4K 8000

STS&PropResults-L-Peak Average.TXT

16K LINEAR O									
A-wt -7	24	34	43	52	28	26	1	1	-2
n									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 3 - STS-Loc1 -

PROJECT - HGMWC

CONTRIBUTOR	SPL	•			REF. DISTAN	•
SOURCE # 1	DB(Lin) DBA 49 24	SPHERE 68	PATH 0	/1000 Ft 0	BARRIERS 0	ATMOS. 2
SOURCE # 2	48 24	68	Ō	O	Ō	2
SOURCE # 3	48 24	68	0	0	0	2
SOURCE # 4	40 19	59	Ŏ	0	0	0
SOURCE # 5	40 19	59	0	0	0	0
SOURCE # 6 SOURCE # 7	40 19 40 19	59 59	0 0	0 0	0 0	0 0
SOURCE # 7	40 19	59 59	Ö	0	ő	0
SOURCE # 9	40 19	59	ŏ	ŏ	ŏ	ŏ
SOURCE # 10	52 27	54	Ŏ	Ŏ	Ŏ	Ŏ
SOURCE # 11	52 27	54	0	0	0	0
SOURCE # 12	52 27	55	0	0	0	0
SOURCE # 13	52 27	55	0	0	0	0
SOURCE # 14 SOURCE # 15	52 27 51 27	55 55	0	0	0	0
SOURCE # 15	67 55	55 55	0	0	0 0	0 0
SOURCE # 17	41 20	61	ŏ	ŏ	ŏ	1
SOURCE # 18	41 20	$\tilde{61}$	ŏ	ŏ	Ŏ	$ar{ extbf{1}}$
SOURCE # 19	41 20	61	0	0	0	1
SOURCE # 20	41 21	61	Ō	Õ	Q	1
SOURCE # 21	41 21	61	0	0	0	1
SOURCE # 22	41 20	61	0	0	0	1
SOURCE # 23 SOURCE # 24	55 42 37 20	66 62	0 0	0 0	0 0	2
SOURCE # 25	38 20	62	ŏ	ŏ	ŏ	2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3
SOURCE # 26	38 20	62	ŏ	ŏ	ŏ	ž
SOURCE # 27	38 20	62	Ŏ	Ŏ	Ŏ	2
SOURCE # 28	38 20	62	0	0	0	2
SOURCE # 29	38 20	62	0	0	0	2
SOURCE # 30	51 38	69 63	0	0	0	3
SOURCE # 31 SOURCE # 32	36 20 36 20	63 63	0	0	0	2
SOURCE # 32	36 20	62	Ŏ	ŏ	ŏ	2
SOURCE # 34	36 20	62	ŏ	ŏ	ŏ	2
SOURCE # 35	36 20	$\overline{62}$	Ŏ	Ŏ	Ö	$\bar{2}$
SOURCE # 36	36 20	62	0	0	0	2
SOURCE # 37	50 36	71	O O	0	0	3
SOURCE # 38	57 38	55	0	0	0	0
SOURCE # 39 SOURCE # 40	57 38 58 38	55 55	0	0 0	0 0	0
SOURCE # 40	63 43	50	ŏ	ŏ	Ö	ŏ
SOURCE # 42	63 44	Šŏ	ŏ	ŏ	ŏ	ŏ
SOURCE # 43	64 44	49	0	0	0	0
SOURCE # 44	44 26	67	Ō	0	Ō	0
SOURCE # 45	45 26	67	0	0	0	Ō
SOURCE # 46 SOURCE # 47	45 26 47 27	67 65	0 0	0 0	0	0 0
SOURCE # 47	47 27	65	0	0	0	0
SOURCE # 48	47 28	65	ŏ	ŏ	Ŏ	
SOURCE # 50	36 20	63 63	0	0	0	0 2 2
SOURCE # 51	36 20	63	0	0	0	2

STS&PropResults-L-Peak Average.TXT BACKGROUND 0 57

0

TOTAL wo bkg 72 56 TOTAL w bkg 72 60

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

COORDINATE LOCATIONS (Ft)

		х	Υ	Z	DST
RECEIVER # 3	STS-Loc1	73466	33832	475	
SOURCE # 1 SOURCE # 2	Primary Crusher SAG Mill	79767 80714	41378 41311	548 556	9831 10416
SOURCE # 2	Ball Mill	80812	41287	556	10416
SOURCE # 4	Regrind Mill 1	80996	41228	559	10555
SOURCE # 5	Regrind Mill 2	81013	41223	559	10563
SOURCE # 6	Regrind Mill 3	81031	41219	559	10573
SOURCE # 7 SOURCE # 8	Regrind Mill 4	80991	41208	559	10537
SOURCE # 8 SOURCE # 9	Regrind Mill 5 Regrind Mill 6	81008 81026	41204 41199	559 559	10546 10556
SOURCE # 10	ROSAHT 1	71900	35000	680	1964
SOURCE # 11	ROSAHT 2	71850	34950	680	1975
SOURCE # 12	ROSAHT 3	71800	34900	680	1989
SOURCE # 13 SOURCE # 14	ROSADZ 1	71750	34850	680	2005
SOURCE # 14 SOURCE # 15	ROSADZ 2 ROSADZ 3	71700 71650	34800 34750	680 680	2024 2045
SOURCE # 16	ROSA BUA	71910	35010	675	1961
SOURCE # 17	JPHT 1	78200	39000	680	7011
SOURCE # 18	ЈРНТ 2	78150	38950	680	6940
SOURCE # 19	JPHT 3	78100	38900	680	6870
SOURCE # 20 SOURCE # 21	JPDZ 1 JPDZ 2	78050 78000	38850 38800	680 680	6799 6729
SOURCE # 22	JPDZ3	78210	39010	680	7025
SOURCE # 23	J₽BU	78210	39010	680	7025
SOURCE # 24	HOSAHT 1	77400	43400	720	10348
SOURCE # 25 SOURCE # 26	HOSAHT 2 HOSAHT 3	77350 77300	43350 43300	720 720	10282 10217
SOURCE # 20	HOSADZ 1	77300 77250	43250	720 720	10152
SOURCE # 28	HOSADZ 2	77200	43200	720	10087
SOURCE # 29	HOSADZ 3	77150	43150	720	10022
SOURCE # 30	HOSABU	77410	43410	720	10361
SOURCE # 31 SOURCE # 32	JOSAHT 1 JOSAHT 2	80600 80550	43700 43650	630 630	12177 12107
SOURCE # 32	JOSAHT 2 JOSAHT 3	80500	43600	630	12038
SOURCE # 34	JOSADZ 1	80450	43550	630	11968
SOURCE # 35	JOSADZ 2	80400	43500	630	11898
SOURCE # 36	JOSADZ 3	80350	43450	630	11828
SOURCE # 37 SOURCE # 38	JOSABU CPDRILL 1	80610 75500	43710 33700	630 460	12191 2038
SOURCE # 38	CPDRILL 2	75450 75450	33650	460	1992
SOURCE # 40	CPDRILL 3	75400	33600	460	1947
SOURCE # 41	SPDRILL 1	74000	34800	480	1105
SOURCE # 42	SPDRILL 2	73950	34750	480	1037
SOURCE # 43 SOURCE # 44	SPDRILL 3 SKPDRILL 1	73900 75600	34700 42100	480 420	970 8539
SOURCE # 45	SKPDRILL 2	75550	42050	420	8478
SOURCE # 46	SKPDRILL 3	75500	42000	420	8417
SOURCE # 47	LPDRILL 1	76900	39600	440	6712
SOURCE # 48	LPDRILL 2	76850	39550	440	6644
SOURCE # 49 SOURCE # 50	LPDRILL 3 TSFHT	76800 85300	39500 37500	440 620	6575 12390
SOURCE # 50	TSFDZ	85250	37450	620	12327
· · · · · · · · · · · · · · · · · · ·			· 		

STS&PropResults-L-Peak Average.TXT

PROJECTED OCTAVE 16K	OCTAVE 31.5		: 125	250	500	1000	2K	4K	8000
LINEAR	66	67	66	64	36	32	11	0	0
A-wt -7	26	41	50	55	33	32	12	1	-2
n ,									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 4 - STS-Loc3 -

PROJECT - HGMWC

CONTRIBUTOR	SPL DB(Lin) DBA			TION FROM	REF. DISTAN	
SOURCE # 1	52 27	SPHERE 65	PATH 0	71000 FE	BARRIERS O	ATMOS. 1
SOURCE # 2	51 26	66	0	0	0	1
SOURCE # 3	51 26	66	0	0	0	1
SOURCE # 4	43 20	59	0	0	0	0
SOURCE # 5	43 20	59	0	0	0	0
SOURCE # 6	43 20	59	0	0	0	0
SOURCE # 7	43 20	59	0	0	0	0
SOURCE # 8	43 20	59	Ō	0	0	0
SOURCE # 9	43 20	59	Ō	Ō	Ō	0
SOURCE # 10	45 22	60	0	0	<u>0</u>	1
SOURCE # 11	45 22	60	0	0	0	1
SOURCE # 12	45 22	60	0	0	0	1
SOURCE # 13	44 22	60	0	0	0	1
SOURCE # 14	44 22	60	Ŏ	0	0	1
SOURCE # 15 SOURCE # 16	44 22 60 47	60 62	0	0	Ŏ	1
SOURCE # 10	44 22	60	0	0 0	0	1 1
SOURCE # 17	44 22	60	0	0	ŏ	1
SOURCE # 19	44 22	60	ŏ	ŏ	ŏ	1
SOURCE # 20	44 22	60	ŏ	Ö	ŏ	i
SOURCE # 21	44 22	60	ŏ	ŏ	ŏ	ī
SOURCE # 22	44 22	60	ŏ	ŏ	ŏ	ī
SOURCE # 23	59 46	63	ŏ	ŏ	ŏ	ī
SOURCE # 24	42 21	61	Ŏ	Ŏ	Ŏ	ī
SOURCE # 25	43 21	61	0	Õ	Ö	1
SOURCE # 26	43 21	61	0	0	0	1.
SOURCE # 27	43 21	61	0	0	0	1
SOURCE # 28	43 21	61	0	0	0	1
SOURCE # 29	43 21	61	Ō	0	Õ	1
SOURCE # 30	57 44	65	0	0	Ō	1
SOURCE # 31	39 20	62	0	0	0	1
SOURCE # 32	39 20	62	0	0	0	1
SOURCE # 33	39 20	62	0	0	0	1
SOURCE # 34 SOURCE # 35	39 20 39 20	62	0	0	0	1
SOURCE # 33	39 20 39 20	62 62	0	0	0	1 1
SOURCE # 37	53 40	68	Ö	0	0 0	2
SOURCE # 37	48 29	64	ŏ	ŏ	ŏ	Ő
SOURCE # 39	48 29	64	ŏ	ŏ	ŏ	ŏ
SOURCE # 40	48 28	64	ŏ	ŏ	ŏ	ŏ
SOURCE # 41	50 31	62	Ŏ	ŏ	ŏ	ŏ
SOURCE # 42	50 31	62	Ŏ	Ŏ	Ŏ	ŏ
SOURCE # 43	50 31	62	0	Ó	Ó	Ó
SOURCE # 44	52 32	60	0	0	0	0
SOURCE # 45	52 33	60	Ō	Ō	0	0
SOURCE # 46	52 33	60	0	0	Õ	Ō
SOURCE # 47	52 33	60	0	0	0	0
SOURCE # 48	52 33	60	0	0	0	0

SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	STS 53 3 36 20 36 20 0 5.	60 62 62	-L-Peak Averaç 0 0 0 0	ge.TXT 0 0 0	0 0 0 2 0 2	
TOTAL wo bkg TOTAL w bkg	67 57 67 5					
TEMPERATURE 15	C 58 F	RELATIVE	HUMIDITY 70	% REF.	DISTANCE	3

COORDINATE LOCATIONS (Ft)

		x	Y	Z	DST
RECEIVER # 4	STS-Loc3	73386	39149	525	67E0
SOURCE # 1 SOURCE # 2	Primary Crusher SAG Mill	79767 80714	41378 41311	548 556	6759 7641
SOURCE # 2	Ball Mill	80812	41287	556	7728
SOURCE # 4	Regrind Mill 1	80996	41228	559	7888
SOURCE # 5	Rearind Mill 2	81013	41223	559	7904
SOURCE # 6	Regrind Mill 3	81031	41219	559	7920
SOURCE # 7	Regrind Mill 4	80991	41208	559	7878
SOURCE # 8	Regrind Mill 5	81008	41204	559	7894
SOURCE # 9	Regrind Mill 6	81026	41199	559	7910
SOURCE # 10	ROSAHT 1	71900	35000	680	4409
SOURCE # 11 SOURCE # 12	ROSAHT 2 ROSAHT 3	71850 71800	34950 34900	680 680	4473 4538
SOURCE # 12	ROSADZ 1	71750	34850	680	4602
SOURCE # 14	ROSADZ 2	71700	34800	680	4666
SOURCE # 15	ROSADZ 3	71650	34750	680	4731
SOURCE # 16	ROSA BUA	71910	35010	675	4396
SOURCE # 17	JPHT 1	78200	39000	680	4818
SOURCE # 18	ЈРНТ 2	78150	38950	680	4770
SOURCE # 19	JPHT 3	78100	38900	680	4723
SOURCE # 20 SOURCE # 21	JPDZ 1 JPDZ 2	78050 78000	38850 38800	680 680	4676 4629
SOURCE # 21	JPDZ Z JPDZ3	78000 78210	39010	680	4828
SOURCE # 23	JPBU	78210	39010	680	4828
SOURCE # 24	HOSAHT 1	77400	43400	720	5849
SOURCE # 25	HOSAHT 2	77350	43350	720	5779
SOURCE # 26	HOSAHT 3	77300	43300	720	5708
SOURCE # 27	HOSADZ 1	77250	43250	720	5637
SOURCE # 28	HOSADZ 2	77200	43200	720	5567
SOURCE # 29 SOURCE # 30	HOSADZ 3	77150 77410	43150 43410	720 720	5496 5864
SOURCE # 30	HOSABU JOSAHT 1	80600	43410	630	8530
SOURCE # 32	JOSAHT 2	80550	43650	630	8461
SOURCE # 33	JOSAHT 3	80500	43600	630	8392
SOURCE # 34	JOSADZ 1	80450	43550	630	8323
SOURCE # 35	JOSADZ 2	80400	43500	630	8254
SOURCE # 36	JOSADZ 3	80350	43450	630	8185
SOURCE # 37	JOSABU	80610	43710	630	8544
SOURCE # 38 SOURCE # 39	CPDRILL 1 CPDRILL 2	75500 75450	33700 33650	460 460	5845 5873
SOURCE # 39	CPDRILL 2 CPDRILL 3	75430 75400	33600	460 460	5903
SOURCE # 41	SPDRILL 1	74000	34800	480	4392
SOURCE # 42	SPDRILL 2	73950	34750	480	4435
SOURCE # 43	SPDRILL 3	73900	34700	480	4478
SOURCE # 44	SKPDRILL 1	75600	42100	420	3690
SOURCE # 45	SKPDRILL 2	75550	42050	420	3620
SOURCE # 46	SKPDRILL 3	75500 76000	42000	420	3550
SOURCE # 47 SOURCE # 48	LPDRILL 1	76900 76950	39600	440 440	3543
300KCE # 48	LPDRILL 2	76850	39550	440	3488

STS&PropResults-L-Peak Average.TXT SOURCE # 49 LPDRILL 3 76800 39500 SOURCE # 50 TSFHT 85300 37500 12027 SOURCE # 50 TSFHT SOURCE # 51 TSFDZ 85250 37450 PROJECTED OCTAVE LEVELS: 31.5 OCTAVE 2ĸ 4ĸ 16K LINEAR A-wt -7 -2 D

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 5 - STS-HouseSO/GMH -

PROJECT - HGMWC

CONTRIBUTOR	SPL	DBA	ATTENU		REF. DISTAN	CE
" 4	DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	56 31	62	0	0	0	1
SOURCE # 2	57 32	61	0	0	0	0
SOURCE # 3	57 32	<u>60</u>	0	0	0	0
SOURCE # 4	50 22	57	Q	0	0	0
SOURCE # 5	50 22	57	0	0	0	0
SOURCE # 6	50 22	57	Õ	0	0	0
SOURCE # 7	50 21	<u>57</u>	0	0	0	0
SOURCE # 8	50 21	57	0	0	0	Õ
SOURCE # 9	50 22	57	0	0	0	<u>o</u>
SOURCE # 10	37 20	62	0	0	<u>0</u>	2
SOURCE # 11	37 20	62	0	0	0	2
SOURCE # 12	36 20	62	0	0	Ŏ	2
SOURCE # 13 SOURCE # 14	36 20	62	0	0	Ŏ	4
	36 20 36 20	62	0	0	0	2
SOURCE # 15 SOURCE # 16	36 20 51 37	62 70	0	o O	0	2 2 2 2 2 2 3
SOURCE # 10	44 22	60	0	0	0	3 1
SOURCE # 17	44 22	60 60	0 0	0 0	0 0	1
SOURCE # 18	44 22	60	Ô	ŏ	ŏ	1
SOURCE # 19	44 22	60	0	ő	ő	1
SOURCE # 20	44 22	60	Ŏ	ŏ	ŏ	i
SOURCE # 22	44 22	60	Ö	ŏ	ŏ	1
SOURCE # 23	59 47	63	ŏ	ŏ	ŏ	1
SOURCE # 24	40 20	62	ŏ	ŏ	ŏ	i
SOURCE # 25	40 20	62	ŏ	ŏ	ŏ	i
SOURCE # 26	40 20	62	ŏ	ŏ	ŏ	i
SOURCE # 27	40 20	62	ŏ	ŏ	ŏ	ī
SOURCE # 28	40 20	62	Ŏ	ŏ	ŏ	ī
SOURCE # 29	40 20	62	Ŏ	Ŏ	Ŏ	ī
SOURCE # 30	55 42	67	Ŏ	Ŏ	Ŏ	$\overline{2}$
SOURCE # 31	42 21	61	Ŏ	Ŏ	Ō	$ar{ extbf{1}}$
SOURCE # 32	42 21	61	Ó	Ó	Ö	1
SOURCE # 33	42 21	61	0	0	0	1
SOURCE # 34	42 21	61	0	0	0	1
SOURCE # 35	42 21	61	0	0	0	1
SOURCE # 36	42 21	61	0	0	0	1
SOURCE # 37	57 44	65	0	0	0	1
SOURCE # 38	45 26	67	0	0	0	0
SOURCE # 39	44 26	67	0	0	0	0
SOURCE # 40	44 26	67	Ō	Ō	0	Ō
SOURCE # 41	44 25	67	0	0	0	1
SOURCE # 42	44 25	67	0	0	0	1
SOURCE # 43	44 25	68	0	0	0	1
SOURCE # 44	45 26	67	Ŏ.	0	0	0
SOURCE # 45	45 26	67	0	0	0	0

		STS⪻	opResults-L	-Peak Av	erage.TXT		
SOURCE # 46	45	26	67	0	0	0	0
SOURCE # 47	48	28	64	0	0	0	0
SOURCE # 48	48	28	64	0	0	0	0
SOURCE # 49	47	28	64	0	0	0	0
SOURCE # 50	49	25	57	0	0	0	0
SOURCE # 51	50	25	56	0	0	0	0
BACKGROUND	0	55					
0							
TOTAL wo bkg	67	50					
TOTAL w bkg	67	56					
TEMPERATURE 15	C 5	8 F	RELATIVE H	UMIDITY	70 %	REF. DISTANCE	3

COORDINATE LOCATIONS (Ft)

		х	Υ	Z	DST
RECEIVER # 5	STS-HouseSO/GMH	82759	38125	560	051
SOURCE # 1	Primary Crusher	79767	41378	548	4419
SOURCE # 2	SAG Mill	80714	41311	556	3786
SOURCE # 3	Ball Mill	80812	41287	556	3713
SOURCE # 4	Regrind Mill 1	80996	41228	559	3568
SOURCE # 5	Regrind Mill 2	81013	41223	559	3556
SOURCE # 6 SOURCE # 7	Regrind Mill 3 Regrind Mill 4	81031 80991	41219 41208	559 559	3543 3553
SOURCE # 7	Regrind Mill 4 Regrind Mill 5	81008	41206	559 559	3542
SOURCE # 9	Regrind Mill 6	81026	41199	559	3528
SOURCE # 10	ROSAHT 1	71900	35000	680	11300
SOURCE # 11	ROSAHT 2	71850	34950	680	11362
SOURCE # 12	ROSAHT 3	71800	34900	680	11424
SOURCE # 13	ROSADZ 1	71750	34850	680	11486
SOURCE # 14	ROSADZ 2	71700	34800	680	11548
SOURCE # 15 SOURCE # 16	ROSADZ 3	71650	34750	680 675	11610
SOURCE # 16 SOURCE # 17	ROSA BUA JPHT 1	71910 78200	35010 39000	680	11287 4643
SOURCE # 17	JPHT 2	78250 78150	38950	680	4683
SOURCE # 19	JPHT 3	78100	38900	680	4724
SOURCE # 20	JPDZ 1	78050	38850	680	4765
SOURCE # 21	JPDZ 2	78000	38800	680	4808
SOURCE # 22	JPDZ3	78210	39010	680	4635
SOURCE # 23	JPBU	78210	39010	680	4635
SOURCE # 24 SOURCE # 25	HOSAHT 1 HOSAHT 2	77400 77350	43400 43350	720 720	7521 7522
SOURCE # 25	HOSAHT 3	77300	43300	720	7523
SOURCE # 27	HOSADZ 1	77250	43250	720	7525
SOURCE # 28	HOSADZ 2	77200	43200	720	7528
SOURCE # 29	HOSADZ 3	77150	43150	720	7532
SOURCE # 30	HOSABU	77410	43410	720	7521
SOURCE # 31	JOSAHT 1	80600	43700	630	5978
SOURCE # 32 SOURCE # 33	JOSAHT 2 JOSAHT 3	80550 80500	43650 43600	630 630	5950 5923
SOURCE # 33	JOSADZ 1	80450	43550	630	5896
SOURCE # 35	JOSADZ 2	80400	43500	630	5870
SOURCE # 36	JOSADZ 3	80350	43450	630	5844
SOURCE # 37	JOSABU	80610	43710	630	5984
SOURCE # 38	CPDRILL 1	75500	33700	460	8501
SOURCE # 39 SOURCE # 40	CPDRILL 2	75450	33650	460	8570
SOURCE # 40 SOURCE # 41	CPDRILL 3 SPDRILL 1	75400 74000	33600 34800	460 480	8639 9369
SOURCE # 41	SPDRILL 2	74000	34750	480	9433
SOURCE # 43	SPDRILL 3	73900	34700	480	9498
SOURCE # 44	SKPDRILL 1	75600	42100	420	8189
SOURCE # 45	SKPDRILL 2	75550	42050	420	8209

STS&PropResults-L-Peak Average.TXT										
SOURCE #	# 46	SKPDRILL :	3 .		7	75500	4200	0	420	8229
SOURCE #	4 47	LPDRILL 1			7	76900	3960	0	440	6043
SOURCE #	# 48	LPDRILL 2			:	76850	3955	0	440	6079
SOURCE #	# 49	LPDRILL 3			;	76800	3950	0	440	6116
SOURCE #	# 50	TSFHT			8	85300	3750	0	620	2617
SOURCE #	# 51	TSFDZ			8	85250	3745	0	620	2581
PROJECTED OCTAVE	OCTAV 31.5		125	250	500	10	00	2K	4K	8000
16K	E A	60	r 7	FO	20	2	2	۸	^	0
LINEAR O	64	60	57	58	30	2	2	0	0	0
A-wt -7	25	33	41	49	26	2	2	1	1	-2
o o										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 6 - STS-HouseGMH -

PROJECT - HGMWC

CONTRIBUTOR	SPL	I DRA	ATTENIIA	TTON EDOM	REF. DISTAN	CE I
	DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 SOURCE # 2	59 35 62 37	58 56	0 0	0 0	0 0	0 0
SOURCE # 3	62 37	56	ŏ	ŏ	ŏ	ŏ
SOURCE # 4	55 24	54	0	0	0	0
SOURCE # 5 SOURCE # 6	55 24 55 24	54 54	0	0	0 0	0 0
SOURCE # 7	55 24	54	ŏ	ŏ	ŏ	ŏ
SOURCE # 8	55 24	54	Ŏ	0	0	0
SOURCE # 9 SOURCE # 10	55 24 37 20	54 62	0 0	0	0 0	0 2
SOURCE # 11	37 20	62	Ŏ	ŏ	Ö	2
SOURCE # 12 SOURCE # 13	37 20	62 63	0	0	Ŏ	2
SOURCE # 13 SOURCE # 14	37 20 37 20	62 62	0	0	0	2 2 2 2
SOURCE # 15	37 20	62	Ŏ	Ŏ	Ŏ	2
SOURCE # 16 SOURCE # 17	51 37 46 23	70 59	0	0 0	0 0	3 0
SOURCE # 17	46 23	59 59	0	ő	Ö	ŏ
SOURCE # 19	46 23	59	0	Ö	Õ	Ö
SOURCE # 20 SOURCE # 21	46 23 46 23	59 59	0	0 0	0	0 0
SOURCE # 22	47 23	59	ŏ	ŏ	ő	ŏ
SOURCE # 23	61 49	60	0	0	0	1
SOURCE # 24 SOURCE # 25	42 21 42 21	61 61	0 0	0 0	0 0	1 1
SOURCE # 26	42 21	61	ŏ	ŏ	ŏ	1
SOURCE # 27	42 21	61	0	0	0	1.
SOURCE # 28 SOURCE # 29	42 21 42 21	61 61	0	0 0	0 0	1 1
SOURCE # 30	57 44	65	0	Ö	0	1
SOURCE # 31 SOURCE # 32	45 22 45 22	60 60	0 0	0 0	0 0	1 1
SOURCE # 32	45 22	60 60	0	Ö	Ö	1
SOURCE # 34	45 22	60	0	Ö	Ŏ	1
SOURCE # 35 SOURCE # 36	45 22 45 22	60 60	0	0 0	0 0	$\frac{1}{0}$
SOURCE # 37	59 47	62	ŏ	ŏ	ŏ	ĭ
SOURCE # 38	45 26	67	0	0	0	0
SOURCE # 39 SOURCE # 40	44 26 44 26	67 67	0	0 0	0 0	0 0
SOURCE # 41	44 25	67	Ō	Ō	0	1
SOURCE # 42	44 25	67	0	0	0	1.

Page 11

		STS⪻	opResults-L	-Peak Av	erage.TXT		
SOURCE # 43	44	25	67	0	0	0	1
SOURCE # 44	47	27	65	0	0	0	0
SOURCE # 45	47	27	65	0	0	0	0
SOURCE # 46	46	27	65	0	0	0	0
SOURCE # 47	49	30	63	0	0	0	0
SOURCE # 48	49	30	63	0	0	0	0
SOURCE # 49	49	30	63	0	0	0	0
SOURCE # 50	46	23	59	0	0	0	0
SOURCE # 51	46	23	59	0	0	0	0
BACKGROUND	0	49					
TOTAL wo bkg	70	53					
TOTAL w bkg	70	54					
TEMPERATURE 15	С	58 F	RELATIVE H	UMIDITY	70 %	REF. DISTANCE	

3

		Х	Υ	Z	DST
RECEIVER # 6	STS-HouseGMH	81823	39370	547	
SOURCE # 1	Primary Crusher	79767	41378	548	2873
SOURCE # 2	SAG Mill	80714	41311	556	2236
SOURCE # 3	Ball Mill	80812	41287	556	2167
SOURCE # 4	Regrind Mill 1	80996	41228	559	2033
SOURCE # 5	Regrind Mill 2	81013	41223	559	2022
SOURCE # 6	Regrind Mill 3	81031	41219	559	2011
SOURCE # 7	Regrind Mill 4	80991	41208	559	2017
SOURCE # 8	Regrind Mill 5	81008	41204	559	2006
SOURCE # 9	Regrind Mill 6	81026	41199	559	1995
SOURCE # 10	ROSAHT 1	71900	35000	680	10843
SOURCE # 11	ROSAHT 2	71850	34950	680	10909
SOURCE # 12	ROSAHT 3	71800	34900	680	10975
SOURCE # 13	ROSADZ 1	71750	34850	680	11041
SOURCE # 14	ROSADZ 2	71700	34800	680	$\frac{11107}{11173}$
SOURCE # 15	ROSADZ 3	71650 71910	34750 35010	680 675	10830
SOURCE # 16 SOURCE # 17	ROSA BUA JPHT 1	71910 78200	39000	680	3644
SOURCE # 17	JPHT 2	78150 78150	38950	680	3699
SOURCE # 18	JPHT 3	78100 78100	38900	680	3754
SOURCE # 19	JPDZ 1	78050	38850	680	3811
SOURCE # 21	JPDZ 2	78000	38800	680	3867
SOURCE # 22	JPDZ3	78210	39010	680	3633
SOURCE # 23	JPBU	78210	39010	680	3633
SOURCE # 24	HOSAHT 1	77400	43400	720	5986
SOURCE # 25	HOSAHT 2	77350	43350	720	5989
SOURCE # 26	HOSAHT 3	77300	43300	720	5994
SOURCE # 27	HOSADZ 1	77250	43250	720	5999
SOURCE # 28	HOSADZ 2	77200	43200	720	6005
SOURCE # 29	HOSADZ 3	77150	43150	720	6012
SOURCE # 30	HOSABU	77410	43410	720	5985
SOURCE # 31	JOSAHT 1	80600	43700	630	4500
SOURCE # 32	JOSAHT 2	80550	43650	630	4466
SOURCE # 33	JOSAHT 3	80500	43600	630	4432
SOURCE # 34	JOSADZ 1	80450	43550	630	4400
SOURCE # 35	JOSADZ 2	80400	43500	630	4369
SOURCE # 36	JOSADZ 3	80350	43450	630	4338
SOURCE # 37	JOSABU	80610	43710	630	4507
SOURCE # 38	CPDRILL 1	75500	33700	460	8493
SOURCE # 39 SOURCE # 40	CPDRILL 2	75450 75400	33650 33600	460 460	8563 8634
SOURCE # 40 SOURCE # 41	CPDRILL 3 SPDRILL 1	73400 74000	34800	480 480	9060
SOURCE # 41 SOURCE # 42	SPDRILL 2	74000	34750	480	9128
JUINCE # 42	SLOUTEL Y	73930	74170	700	3120

Page 12

		STS	&Pror	Results-L	Peak	Aver	age.TX	T		
SOURCE #	£ 43	SPDRILL 3	Ţ		73	900	34700		480	9197
SOURCE #	£ 44	SKPDRILL	1		75	600	42100		420	6796
SOURCE #	45	SKPDRILL	2		75	550	42050		420	6822
SOURCE #	[‡] 46	SKPDRILL	3			500	42000		420	6849
SOURCE #	£ 47	LPDRILL 1	_			900	39600		440	4929
SOURCE #		LPDRILL 2				850	39550		440	4977
SOURCE #		LPDRILL 3				800	39500		440	5025
SOURCE #		TSFHT				300	37500		620	3948
SOURCE #		TSFDZ				250	37450		620	3928
JOUNCE "	71	13, 12.			0.5	230	37430		020	3320
PROJECTED	OCTA	/E LEVELS:								
OCTAVE	31.5	5 63	125	250	500	100	00 2	K	4K	8000
16K										
LINEAR	68	63	59	60	34	26	5	2	0	0
0										
A-wt	28	37	43	52	30	20	5	3	1	-2
-7					- +		=	_	_	_
0										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 7 - STS-GMH-Rt265 -

CONTRIBUTOR SPL	l DRA	ΔΤΤΕΝΙΙΔ	TTON FROM	REF. DISTAN	CF
DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 51 26	66	0	71000 11	0	1
SOURCE # 2 52 27	65	ŏ	ŏ	ŏ	i
SOURCE # 2 32 27 SOURCE # 3 52 27	65		ŏ	ŏ	i
		0	•	_	
SOURCE # 4 45 20	59	0	0	0	0
SOURCE # 5 45 20	59	0	0	0	0
SOURCE # 6 45 20	59	0	0	<u>o</u>	0
SOURCE # 7 45 20	58	Ō	Õ	Ō	0
SOURCE # 8 45 20	58	0	0	0	Q
SOURCE # 9 45 20	58	0	0	0	0
SOURCE # 10 33 19	63	0	0	0	2
SOURCE # 11 33 19	63	0	0	0	2
SOURCE # 12 33 19	63	0	0	0	2
SOURCE # 13 33 19	63	0	0	0	2
SOURCE # 14 33 19	63	0	0	0	2 2 2 2 2
SOURCE # 15 33 19	63	0	Ö	Ó	2
SOURCE # 16 47 33	73	Ŏ	Ŏ	Ō	4
SOURCE # 17 38 20	62	Ö	Ö	Ŏ	ĺ
SOURCE # 18 38 20	62	Ŏ	ŏ	ŏ	ī
SOURCE # 19 38 20	62	ŏ	ŏ	ŏ	ī
SOURCE # 20 38 20	62	ŏ	ŏ	ŏ	Ī.
SOURCE # 21 38 20	62	ŏ	ŏ	ŏ	ī
SOURCE # 22 39 20	62	ŏ	ŏ	ŏ	1
SOURCE # 22 53 20	68	ŏ	ŏ	ŏ	2
SOURCE # 24 37 20	62	ŏ	ŏ	ŏ	້າ
SOURCE # 24 37 20	62	ő	Ö	ŏ	2
SOURCE # 25 37 20		Ö	ő	Ö	2
	62 63	_	0	0	1 2 2 2 2 2 2
	62	0	•	-	2
	62	Ŏ	0	0	<u> </u>
SOURCE # 29 37 20	62	Õ	0	0	2
SOURCE # 30 51 38	70	Ŏ	0	0	3
SOURCE # 31 40 20	62	0	Õ	0	1
SOURCE # 32 40 20	62	0	0	0	1
SOURCE # 33 40 20	62	0	0	0	1
SOURCE # 34 40 20	62	Ō	0	<u>0</u>	1
SOURCE # 35 40 20	62	0	0	0	1.
SOURCE # 36 40 20	62	0	0	0	1
SOURCE # 37 54 41	67	Ō	Ō	Õ	2
SOURCE # 38 40 23	70	0	0	0	1
SOURCE # 39 40 23	70	0	0	0	1

Page 13

		STS⪻	opResults-L	Peak Av	erage.TXT		
SOURCE # 40	40	23	70	0	0	0	1
SOURCE # 41	40	22	70	0	0	0	1
SOURCE # 42	40	22	70	0	0	0	1
SOURCE # 43	40	22	70	0	0	0	1
SOURCE # 44	41	23	69	0	0	0	1
SOURCE # 45	41	23	69	0	0	0	1
SOURCE # 46	41	23	69	0	0	0	1
SOURCE # 47	43	24	68	0	0	0	1
SOURCE # 48	43	24	68	0	0	0	1
SOURCE # 49	43	24	68	0	0	0	1
SOURCE # 50	48	24	58	0	0	0	0
SOURCE # 51	48	24	58	0	0	0	0
BACKGROUND	8	58					
TOTAL wo bkg	62	46					
TOTAL w bkg	62	58					
TEMPERATURE 1	5 C	58 F	RELATIVE H	UMIDITY	70 %	REF. DISTA	NCE

DECETVED # 7	CTC CHIL D+76"	X	2004C	Z 568	DST
RECEIVER # 7 SOURCE # 1	STS-GMH-Rt265 Primary Crusher	87322 79767	39946 41378	548	7689
SOURCE # 2	SAG Mill	80714	41311	556	6747
SOURCE # 3	Ball Mill	80812	41287	556	6646
SOURCE # 4	Regrind Mill 1	80996	41228	559	6454
SOURCE # 5	Regrind Mill 2	81013	41223	559	6436
SOURCE # 6 SOURCE # 7	Regrind Mill 3 Regrind Mill 4	81031 80991	41219 41208	559 559	6418 6455
SOURCE # 7	Regrind Mill 4 Regrind Mill 5	81008	41208	559 559	6438
SOURCE # 9	Regrind Mill 6	81026	41199	559	6419
SOURCE # 10	ROSAHT 1	71900	35000	680	16196
SOURCE # 11	ROSAHT 2	71850	34950	680	16259
SOURCE # 12	ROSAHT 3	71800	34900	680	16322
SOURCE # 13	ROSADZ 1	71750	34850	680	16385
SOURCE # 14	ROSADZ 2	71700	34800	680	16448
SOURCE # 15	ROSADZ 3	71650	34750	680	16511
SOURCE # 16 SOURCE # 17	ROSA BUA	71910 78200	35010	675	16183
SOURCE # 17	JPHT 1 JPHT 2	78200 78150	39000 38950	680 680	9171 9226
SOURCE # 18	JPHT 3	78100	38900	680	9281
SOURCE # 20	JPDZ 1	78050	38850	680	9337
SOURCE # 21	JPDZ 2	78000	38800	680	9392
SOURCE # 22	JPDZ3	78210	39010	680	9160
SOURCE # 23	JPBU	78210	39010	680	9160
SOURCE # 24	HOSAHT 1	77400	43400	720	10507
SOURCE # 25	HOSAHT 2	77350	43350	720	10538
SOURCE # 26	HOSAHT 3	77300	43300	720	10569
SOURCE # 27 SOURCE # 28	HOSADZ 1 HOSADZ 2	77250 77200	43250 43200	720 720	10601 10633
SOURCE # 28	HOSADZ 2 HOSADZ 3	77200	43150	720 720	10665
SOURCE # 29	HOSABU	77410	43410	720	10500
SOURCE # 31	JOSAHT 1	80600	43700	630	7699
SOURCE # 32	JOSAHT 2	80550	43650	630	7719
SOURCE # 33	JOSAHT 3	80500	43600	630	7739
SOURCE # 34	JOSADZ 1	80450	43550	630	7759
SOURCE # 35	JOSADZ 2	80400	43500	630	7781
SOURCE # 36	JOSADZ 3	80350	43450	630	7803
SOURCE # 37 SOURCE # 38	JOSABU	80610	43710	630	7695
SOURCE # 38 SOURCE # 39	CPDRILL 1 CPDRILL 2	75500 75450	33700 33650	460 460	13371 13438
300KCE # 33	CLOUTEL T	73430	22020	400	T3430

Page 14

		STS	&Prop	Results-L	-Peak	Aver	age.T	XT		
SOURCE #	40	CPDRILL 3	•			5400	33600		460	13506
SOURCE #	41	SPDRILL 1			7	4000	34800)	480	14281
SOURCE #	42	SPDRILL 2			7	3950	34750)	480	14346
SOURCE #	43	SPDRILL 3			7	3900	34700)	480	14411
SOURCE #	44	SKPDRILL :	1		7	5600	42100	Ó	420	11919
SOURCE #	45	SKPDRILL ?	2			5550	42050	Ó	420	11959
SOURCE #		SKPDRILL	3			5500	42000		420	12000
SOURCE #		LPDRILL 1	_			6900	39600		440	10428
SOURCE #	48	LPDRILL 2				6850	39550		440	10480
SOURCE #	49	LPDRILL 3				6800	39500		440	10532
SOURCE #	50	TSFHT				5300	37500		620	3174
SOURCE #		TSFDZ				5250	37450		620	3244
PROJECTED	OCTAV	'E LEVELS:								
OCTAVE	31.5	63	125	250	500	100	00 2	2K	4K	8000
16K										
LINEAR	60	55	53	53	24	14	4	0	0	0
0										
A-wt	20	29	36	44	20	14	4	1	1	-2
-7	,									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 8 - STS-SOR219 -

CONTRIBUTOR	SPL				REF. DISTAN	
COURCE # 1	DB(Lin) DBA 55 30	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 SOURCE # 2	55 30 57 32	62 61	0	0	0 0	Ö
SOURCE # 3	57 32	61	ŏ	ŏ	ŏ	ŏ
SOURCE # 4	49 21	57	Ŏ	Ŏ	Ŏ	Ŏ
SOURCE # 5	49 21	57	0	0	0	0
SOURCE # 6	49 21	57	Ō	<u>o</u>	Ō	0
SOURCE # 7	49 21	57	0	0	0 0	Ö
SOURCE # 8	49 21	57	0	0	0	0
SOURCE # 9 SOURCE # 10	49 21 34 19	57 63	0	0	0 0	0 2
SOURCE # 10	34 19	63	Ô	ŏ	ő	2
SOURCE # 12	34 19	63	ŏ	ŏ	ŏ	2
SOURCE # 13	34 19	63	Ŏ	Ŏ	Ŏ	2
SOURCE # 14	34 19	63	0	0	0	2
SOURCE # 15	34 19	63	0	0	0	2
SOURCE # 16	48 34	73	0	0	0	4
SOURCE # 17	40 20	61	0	0	Ŏ	1
SOURCE # 18 SOURCE # 19	40 20 40 20	62 62	0	0 0	0 0	1 1
SOURCE # 19	40 20	62	Ő	Ö	ŏ	ī
SOURCE # 21	40 20	62	ŏ	ŏ	ŏ	î
SOURCE # 22	40 20	62	ŏ	ŏ	ŏ	ī
SOURCE # 23	55 42	67	0	0	0	2
SOURCE # 24	41 21	61	Ō	Ō	Ō	1
SOURCE # 25	41 21	61	0	Õ	Ŏ	1
SOURCE # 26 SOURCE # 27	41 21	61	0	0	0	1 1
SOURCE # 27 SOURCE # 28	41 21 41 21	61 61	0	0 0	0 0	1
SOURCE # 28	41 21	61	Ŏ	ŏ	ŏ	1
SOURCE # 30	56 43	66	ŏ	ŏ	ŏ	Ž
SOURCE # 31	47 24	58	Ō	Ö	Ŏ	Ō
SOURCE # 32	47 24	58	0	0	0	0
SOURCE # 33	47 23	58	0	Ŏ.	0	Õ
SOURCE # 34	47 23	58	0	0	0	Ŏ
SOURCE # 35 SOURCE # 36	47 23 47 23	59 59	0	0	0 0	0 0
300KCE # 30	47 23	23	U	U	υ	U

Page 15

SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 47 SOURCE # 48 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	621 411 410 400 444 445 455 420 0	STS⪻ 50 23 23 23 23 23 26 26 26 26 26 26 21 21 54	opResults 60 69 69 70 70 67 67 67 66 67 61	-L-Peak Av 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	verage.TXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	1 1 1 1 1 1 0 0 0 0 0
TOTAL wo bkg TOTAL w bkg	67 67	52 56					
TEMPERATURE 15	С	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTAN	NCE 3

RECEIVER # 8	STS-SOR219	X 83995	Y 43603	Z 549	DST
SOURCE # 1	Primary Crusher	79767	41378	548	4777
SOURCE # 2	SAG Mill	80714	41311	556	4001
SOURCE # 3	Ball Mill	80812	41287	556	3935
SOURCE # 4	Regrind Mill 1	80996	41228	559	3825
SOURCE # 5	Regrind Mill 2	81013	41223	559	3815
SOURCE # 6	Regrind Mill 3	81031	41219	559	3803
SOURCE # 7	Regrind Mill 4	80991	41208	55 9	3841
SOURCE # 8	Regrind Mill 5	81008	41204	55 9	3831
SOURCE # 9	Regrind Mill 6	81026	41199	559	3820
SOURCE # 10	ROŠAHT 1	71900	35000	680	14843
SOURCE # 11	ROSAHT 2	71850	34950	680	14912
SOURCE # 12	ROSAHT 3	71800	34900	680	14982
SOURCE # 13	ROSADZ 1	71750	34850	680	15052
SOURCE # 14	ROSADZ 2	71700	34800	680	15122
SOURCE # 15	ROSADZ 3	71650	34750	680	15191
SOURCE # 16	ROSA BUA	71910	35010	675	14829
SOURCE # 17	JPHT 1	78200	39000	680	7401
SOURCE # 18	JPHT 2	78150	38950	680	7472
SOURCE # 19	JPHT 3	78100	38900	680	7542
SOURCE # 20	JPDZ 1	78050	38850	680	7612
SOURCE # 21	JPDZ 2	78000	38800	680	7682
SOURCE # 22	JPDZ3	78210	39010	680	7387
SOURCE # 23	JPBU	78210	39010	680	7387
SOURCE # 24 SOURCE # 25	HOSAHT 1	77400	43400	720	6600
SOURCE # 25 SOURCE # 26	HOSAHT 2 HOSAHT 3	77350 77300	43350 43300	720 720	6652 6704
SOURCE # 20	HOSADZ 1	77250	43250	720 720	6756
SOURCE # 27	HOSADZ 1	77200	43230	720 720	6809
SOURCE # 28	HOSADZ Z	77200 77150	43150	720 720	6862
SOURCE # 29	HOSABU	77410	43410	720	6590
SOURCE # 31	JOSAHT 1	80600	43700	630	3397
SOURCE # 32	JOSAHT 2	80550	43650	630	3446
SOURCE # 33	JOSAHT 3	80500	43600	630	3495
SOURCE # 34	JOSADZ 1	80450	43550	630	3546
SOURCE # 35	JOSADZ 2	80400	43500	630	3597
SOURCE # 36	JOSADZ 3	80350	43450	630	3649
	· · - · - · ·	20250			50.5

		STS	&Prop	Results-L	Peak	Aver	age.T	XT		
SOURCE #	37	JOSABU	•			0610	43710		630	3387
SOURCE #	38	CPDRILL 1			75	5500	33700)	460	13047
SOURCE #	39	CPDRILL 2			75	5450	33650)	460	13118
SOURCE #	40	CPDRILL 3			7:	5400	33600)	460	13188
SOURCE #	41	SPDRILL 1			74	1000	34800)	480	13319
SOURCE #	42	SPDRILL 2				3950	34750		480	13389
SOURCE #	43	SPDRILL 3				3900	34700		480	13460
SOURCE #		SKPDRILL	1			600	42100		420	8529
SOURCE #	45	SKPDRILL	2			5550	42050		420	8587
SOURCE #	46	SKPDRILL	3			5500	42000		420	8645
SOURCE #		LPDRILL 1	-			5900	39600		440	8147
SOURCE #	48	LPDRILL 2				5850	39550		440	8215
SOURCE #	49	LPDRILL 3				5800	39500		440	8283
SOURCE #		TSFHT				300	37500		620	6241
SOURCE #	51	TSFDZ				5250	37450)	620	6280
								-		
PROJECTED (OCTA	/E LEVELS:								
OCTAVE	31.5	63	125	250	500	100	00 7	2ĸ	4K	8000
16K										
LINEAR	64	59	57	59	30	2	5	0	0	0
0										
A-Wt	25	33	41	51	27	2	5	1	1	-2
-7										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 9 - STS-5099GMH -

CONTRIBUTOR	SPL DB(Lin) D		ATTENU/	ATION FROM /1000 ft	REF. DISTAN BARRIERS	CE ATMOS.
SOURCE # 1	47 23	69	0	0	0	2
SOURCE # 2 SOURCE # 3	48 24 48 24	68 68	0	0 0	0	2 2
SOURCE # 4	41 19	59	ŏ	ő	ŏ	Õ
SOURCE # 5	41 19	59	0	0	0	0
SOURCE # 6 SOURCE # 7	41 19 41 19	59 59	0	0 0	0	0 0
SOURCE # 8	41 19	59	ŏ	ŏ	ŏ	ŏ
SOURCE # 9	41 19	59	0	0	Õ	0
SOURCE # 10 SOURCE # 11	32 19 32 19	63 63	0	0	0	3 3
SOURCE # 12	32 19	63	ŏ	ŏ	ŏ	3
SOURCE # 13 SOURCE # 14	32 19 32 19	63	0	0	0	3
SOURCE # 14 SOURCE # 15	32 19	63 63	0	0	Ŏ	3
SOURCE # 16	45 30	75	0	Ŏ	Ŏ	5
SOURCE # 17 SOURCE # 18	36 19 36 19	62 62	0	0 0	0	2 2 2 2 2
SOURCE # 18	36 19	62	Ö	0	ŏ	2
SOURCE # 20	36 19	62	0	Ō	Ō	2
SOURCE # 21 SOURCE # 22	36 19 36 20	62 63	0	0 0	0	2
SOURCE # 22	50 36	71	Ö	ő	ő	
SOURCE # 24	35 19	63	0	0	0	3 2 2 2 2 2
SOURCE # 25 SOURCE # 26	35 19 35 19	63 63	0	0	0	2
SOURCE # 27	35 19	63	ŏ	ŏ	ŏ	2
SOURCE # 28 SOURCE # 29	35 19 35 19	63	0	0	0	2
SOURCE # 29	48 34	63 72	0	0	0	2 4
SOURCE # 31	37 20	62	0	Ö	ŏ	2
SOURCE # 32 SOURCE # 33	37 20 37 20	62 62	0 0	0 0	0	2 2
JOURCE # JJ	51 20	02	v	U	V	L

Page 17

SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	37 37 37 39 39 38 39 39 40 40 43 40 43	STS⪻ 20 20 20 37 22 22 22 22 22 22 22 23 23 23 21 21 74	opResults-1 62 62 62 70 70 70 71 71 71 70 70 70 70 70	Peak Ave	erage.TXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	222311111111111111111111111111111111111
TOTAL wo bkg TOTAL w bkg	59 59	43 74					
TEMPERATURE 15	c !	58 F	RELATIVE H	HUMIDITY	70 %	REF. DISTAN	NCE 3

		X	Υ	Z	DST
RECEIVER # 9	STS-5099GMH	90708	38956	576	11205
SOURCE # 1 SOURCE # 2 SOURCE # 3	Primary Crusher	79767	41378 41311	548	11205 10267
SOURCE # 2	SAG Mill	80714 80812	41287	556 556	10166
SOURCE # 3 SOURCE # 4	Ball Mill	80996	41228	559	9974
SOURCE # 4 SOURCE # 5	Regrind Mill 1 Regrind Mill 2	81013	41223	559	9956
SOURCE # 5 SOURCE # 6	Regrind Mill 2 Regrind Mill 3	81031	41219	559	9938
SOURCE # 0	Regrind Mill 4	80991	41208	559	9974
SOURCE # 7	Regrind Mill 5	81008	41204	559	9957
SOURCE # 9	Regrind Mill 6	81026	41199	559	9938
SOURCE # 10	ROSAHT 1	71900	35000	680	19219
SOURCE # 11	ROSAHT 2	71850	34950	680	19279
SOURCE # 12	ROSAHT 3	71800	34900	680	19338
SOURCE # 13	ROSADZ 1	71750	34850	680	19397
SOURCE # 14	ROSADZ 2	71700	34800	680	19457
SOURCE # 15	ROSADZ 3	71650	34750	680	19516
SOURCE # 16	ROSA BUA	71910	35010	675	19207
SOURCE # 17	JPHT 1	78200	39000	680	12508
SOURCE # 18	JPHT 2	78150	38950	680	12558
SOURCE # 19	JPHT 3	78100	38900	680	12608
SOURCE # 20	JPDZ 1	78050	38850	680	12658
SOURCE # 21	JPDZ 2	78000	38800	680	12709
SOURCE # 22	JPDZ3	78210	39010	680	12498
SOURCE # 23	JPBU	78210	39010	680	12498
SOURCE # 24	HOSAHT 1	77400	43400	720	14031
SOURCE # 25	HOSAHT 2	77350	43350	720	14062 14094
SOURCE # 26	HOSAHT 3	77300 77250	43300	720 720	14127
SOURCE # 27 SOURCE # 28	HOSADZ 1	77230 77200	43250 43200	720 720	14159
SOURCE # 28 SOURCE # 29	HOSADZ 2 HOSADZ 3	77200	43150	720	14192
SOURCE # 29	HOSABU	77410	43410	720	14024
SOURCE # 30	JOSAHT 1	80600	43700	630	11166
SOURCE # 32	JOSAHT 2	80550	43650	630	11190
SOURCE # 32	JOSAHT 3	80500	43600	630	11214
20022 33		22300			

Page 18

		STS	&Prop	Results-L	Peak	Aver	age.T	XT		
SOURCE #	34	JOSADZ 1	•			450	4355		630	11239
SOURCE #	35	JOSADZ 2			804	400	4350	0	630	11265
SOURCE #	36	JOSADZ 3			80.	350	4345	0	630	11291
SOURCE #	37	JOSABU			80	610	4371	0	630	11161
SOURCE #	38	CPDRILL 1			75	500	3370		460	16091
SOURCE #	39	CPDRILL 2			75	450	3365	0	460	16154
SOURCE #	40	CPDRILL 3			75	400	3360	0	460	16218
SOURCE #	41	SPDRILL 1				000	3480	0	480	17217
SOURCE #	42	SPDRILL 2			73	950	3475	0	480	17278
SOURCE #	43	SPDRILL 3				900	3470	0	480	17338
SOURCE #	44	SKPDRILL :	1,			600	4210		420	15432
SOURCE #	45	SKPDRILL 3			75	550	4205		420	15471
SOURCE #	46	SKPDRILL	3			500	4200		420	15510
SOURCE #		LPDRILL 1				900	3960		440	13823
SOURCE #		LPDRILL 2				850	3955		440	13871
SOURCE #	49	LPDRILL 3				800	3950		440	13919
	50	TSFHT				300	3750		620	5600
SOURCE #	51	TSFDZ			85	250	3745	0	620	5662
PROJECTED (OCTAV	/E LEVELS:								
OCTAVE	31.5		125	250	500	10	00	2ĸ	4K	8000
16K										
LINEAR	56	52	50	49	18		6	0	0	0
0										
A-wt	17	26	33	41	15		6	1	1	2
-7										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 10 - STS-SR29/204 -

CONTRIBUTOR	SPL DB(Lin) DB		ATTENU/	ATION FROM /1000 Ft	REF. DISTAN	ICE
SOURCE # 1	47 23	69	0) TOOO LE	0	7
SOURCE # 1	48 24	69	ő	Ŏ	ŏ	5
SOURCE # 2	48 24	68	ň	ŏ	ň	2
SOURCE # 3	40 19	59	ň	ň	ň	ñ
SOURCE # 5	40 19	59	ň	ň	ň	ň
SOURCE # 6	40 19	59	ñ	Ŏ	ŏ	ň
SOURCE # 7	40 19	59	ň	ŏ	ŏ	ň
SOURCE # 8	40 19	59	ŏ	ŏ	ŏ	ŏ
SOURCE # 9	40 19	59	ŏ	ŏ	Ŏ	Ŏ
SOURCE # 10	32 19	63	Ŏ	Ŏ	Ŏ	3
SOURCE # 11	32 19	63	Ö	Ö	Ŏ	3
SOURCE # 12	32 19	63	Ō	0	0	3
SOURCE # 13	32 19	63	0	0	0	3
SOURCE # 14	32 19	63	0	0	0	3
SOURCE # 15	32 19	63	0	0	0	3
SOURCE # 16	45 30	75	0	0	0	5
SOURCE # 17	35 19	63	0	0	0	2
SOURCE # 18	35 19	63	0	0	0	2
SOURCE # 19	35 19	63	0	0	0	2
SOURCE # 20	35 19	63	0	0	Ō	2
SOURCE # 21	35 19	63	Ō	Ō	Ō	2
SOURCE # 22	35 19	63	Q	Q	0	2
SOURCE # 23	49 35	72	0	0	0	4
SOURCE # 24	34 19	63	0	0	<u>o</u>	2
SOURCE # 25	34 19	63	0	O O	Ŏ	2
SOURCE # 26	34 19	63	O O	Ŏ	Ŏ	2
SOURCE # 27	34 19	63	Ö	Ŏ	Ŏ	2
SOURCE # 28	34 19	63	Ŏ	Ŏ	ŭ	4
SOURCE # 29	34 19	63	Ŏ	Ŏ	Ŭ	2
SOURCE # 30	48 34	72	0	0	U	4

Page 19

SOURCE # 31 SOURCE # 32 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	3366666633888887999009110 366666666666666666666666666666666666	20 20 20 20 20 37 22 21 21 21 22 22 22 22 21 79	opResults-L 62 62 62 62 62 62 71 71 71 71 71 70 70 70 70 70	-Peak AV	erage.TXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	222223111111111111111111111111111111111
TOTAL wo bkg TOTAL w bkg	58 58	42 79			70.0/		
TEMPERATURE 15	C	58 F	RELATIVE H	UMIDITY	70 %	REF. DISTAN	ICE 3

		X	Y	Z	DST
RECEIVER # 10		91534	39553	576	
SOURCE # 3	l Primary Crusher	79767	41378	548	11907
SOURCE # 2	2 SAG Mill	80714	41311	556	10961
SOURCE #	Ball Mill	80812	41287	556	10860
SOURCE # 4	1 Regrind Mill 1	80996	41228	559	10670
SOURCE # 5	Regrind Mill 2	81013	41223	559	10652
SOURCE # 6		81031	41219	559	10634
SOURCE # 7	7 Regrind Mill 4	80991	41208	559	10672
SOURCE # 8		81008	41204	559	10654
SOURCE # S		81026	41199	559	10636
SOURCE # 10		71900	35000	680	20155
SOURCE # 13	L ROSAHT 2	71850	34950	680	20215
SOURCE # 12	ROSAHT 3	71800	34900	680	20275
SOURCE # 13		71750	34850	680	20335
SOURCE # 14		71700	34800	680	20395
SOURCE # 15	ROSADZ 3	71650	34750	680	20456
SOURCE # 16	ROSA BUA	71910	35010	675	20143
SOURCE # 17	7 JPHT 1	78200	39000	680	13345
SOURCE # 18	3 JPHT 2	78150	38950	680	13397
SOURCE # 19		78100	38900	680	13450
SOURCE # 20		78050	38850	680	13502
SOURCE # 21		78000	38800	680	13555
SOURCE # 22		78210	39010	680	13335
SOURCE # 23		78210	39010	680	13335
SOURCE # 24		77400	43400	720	14648
SOURCE # 25		77350	43350	720	14684
SOURCE # 26		77300	43300	720	14719
SOURCE # 27		77250	43250	720	14755
SOURCE # 28		77200	43200	720	14791
SOURCE # 29		77150	43150	720	14827
SOURCE # 30	HOSABU	77410	43410	720	14641

Page 20

APPENDIX F

Soundcalc Output -L-Peak Results for STS Ambient Locations

STS&PropResults-L-Peak.TXT GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 1 - STS-HBC -

PROJECT - HGMWC-L Peak

SOURCE # 22 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 7 SOURCE # 8 SOURCE # 10 SOURCE # 11 SOURCE # 11 SOURCE # 12 SOURCE # 15 SOURCE # 15 SOURCE # 15 SOURCE # 17 SOURCE # 18 SOURCE # 18 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 25 SOURCE # 27 SOURCE # 28 SOURCE # 29 SOURCE # 30 SOURCE # 31 SOURCE # 31 SOURCE # 33 SOURCE # 35 SOURCE # 37 SOURCE # 38 SOURCE # 44 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	SPL DB(Lin) DBA 52 27 51 26 51 26 43 20 44 22 45 42 22 45 22 45 22 45 22 45 22 45 22 46 22 47 43 21 43	PATH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATION FROM /1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF. DISTAN BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CE ATMOS. 1 1 0 0 0 0 0 2 2 2 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
TOTAL wo bkg TOTAL w bkg	65 50 65 86				

RECEIVER # 1 SOURCE # 1	STS-HBC	ruchor		768 797	98 67			Z 527 548	DST 7067
SOURCE # 2	Primary C SAG Mill	rusner		807		4131	1	556	7559
SOURCE # 3	Ball Mill			808	12	4128	7	556	7630
SOURCE # 4	Regrind M	i]] 1		809		4122	8	559	7776
SOURCE # 5 SOURCE # 6	Regrind M Regrind M	ill 2 ill 3		810 810	113 21	4122	ე ი	559 559	7789 7802
SOURCE # 0	Regrind M	ill 4		809	91	4120	<i>J</i>	559	7790
SOURCE # 8	Regrind M	iii 5		810		4120	4	559	7803
SOURCE # 9	Regrind M	i11 6		810	26	4119	9	559	7816
SOURCE # 10	ROSAHT 1			719	00	3500		680	13776
SOURCE # 11 SOURCE # 12	ROSAHT 2 ROSAHT 3			718 718		3495 3490		680 680	13841 13906
SOURCE # 12	ROSADZ 1			710 717		3485		680	13970
SOURCE # 14	ROSADZ 2			717	00	3480	ŏ	680	14035
SOURCE # 15	ROSADZ 3			716	50	3475	0	680	14100
SOURCE # 16	ROSA BUA			719	10	3501		675	13763
SOURCE # 17	JPHT 1			782	00	3900	0	680	8933
SOURCE # 18 SOURCE # 19	JPHT 2 JPHT 3			781 781		3895 3890		680 680	8976 9018
SOURCE # 20	JPDZ 1			780	50	3885	ŏ	680	9061
SOURCE # 21	JPDZ 2			780	00	3880	0	680	9105
SOURCE # 22	JPDZ3			782	10	3901	0	680	8925
SOURCE # 23	JPBU			782		3901		680	8925
SOURCE # 24 SOURCE # 25	HOSAHT 1 HOSAHT 2			774 773	50	4340	U N	720 720	4469 4513
SOURCE # 26	HOSAHT 3			773	00	4335 4330 4325	Ŏ	720	4558
SOURCE # 27	HOSADZ 1			772		4325	Ŏ	720	4604
SOURCE # 28	HOSADZ 2			772	00	4320	0	720	4650
SOURCE # 29	HOSADZ 3			771		4315	0	720	4697
SOURCE # 30 SOURCE # 31	HOSABU JOSAHT 1			774 806		4341 4370	U N	720 630	4460 5552
SOURCE # 32	JOSAHT 2			805		4365		630	5556
SOURCE # 33	JOSAHT 3			805	00	4360	0	630	5562
SOURCE # 34	JOSADZ 1			804	50	4355	Q	630	5568
SOURCE # 35	JOSADZ 2			804		4350		630	5575
SOURCE # 36 SOURCE # 37	JOSADZ 3 JOSABU			803 806		4345 4371		630 630	5583 5551
SOURCE # 38	CPDRILL 1			755	00	3370		460	14206
SOURCE # 39	CPDRILL 2			754		3365	0	460	14260
SOURCE # 40	CPDRILL 3			754	00	3360	0	460	14315
SOURCE # 41 SOURCE # 42	SPDRILL 1			740 739		3480 3475		480 480	13355 13415
SOURCE # 42 SOURCE # 43	SPDRILL 2 SPDRILL 3			739 739		3470		480	13474
SOURCE # 44	SKPDRILL :	1		756	00	4210	ŏ	420	5883
SOURCE # 45	SKPDRILL 2	2		755	50	4205	0	420	5942
SOURCE # 46	SKPDRILL :	3		755		4200		420	6003
SOURCE # 47 SOURCE # 48	LPDRILL 1 LPDRILL 2			769 768		3960 3955		440 440	8237 8287
SOURCE # 48	LPDRILL 3			768 768		3950		440	8338
SOURCE # 50	TSFHT			853		3750		620	13321
SOURCE # 51	TSFDZ			852	50	3745	0	620	13328
BROJECTED OCTAV	/E IEVELS:								
PROJECTED OCTAVE 31.		125	250	500	100	00	2κ	4K	8000
16K LINEAR 61	57	56	58	28	2	2	0	0	0
0									

A-wt -7

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 2 - STS-KIP -

CONTRIBUTOR	I	SPL	l DBA	ATTENU	ATION FROM	REF. DISTAN	CE
·	DB(L	in) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 SOURCE # 2	54 54	29 29	63 63	0 0	0 0	0 0	1 1
SOURCE # 3	54	29	63	ŏ	ŏ	ŏ	1
SOURCE # 4	46	20	58	0	0	0	0
SOURCE # 5	46	20	58	Ŏ	0	0	0
SOURCE # 6 SOURCE # 7	46 46	20 20	58 58	0	0 0	0	0 0
SOURCE # 8	46	20	58	ŏ	ŏ	ŏ	ŏ
SOURCE # 9	46	20	58	0	Ō	Ö	0
SOURCE # 10	40	20	62	Ŏ	Ŏ	0	1
SOURCE # 11 SOURCE # 12	40 40	20 20	62 62	0	0 0	0 0	1 1
SOURCE # 12	40	20	62	ŏ	ŏ	ŏ	1
SOURCE # 14	40	20	62	0	Ō	Ö	1
SOURCE # 15	40	20	62	0	0	0	1 2
SOURCE # 16 SOURCE # 17	54 48	41 24	67 58	0	0 0	0 0	0
SOURCE # 17	48	24	58	ŏ	ŏ	ŏ	ŏ
SOURCE # 19	48	24	58	Ŏ	Ŏ	0	0
SOURCE # 20	48	24	58	0	0	0	0
SOURCE # 21 SOURCE # 22	48 48	24 24	57 58	0 0	0 0	0 0	0 0
SOURCE # 23	63	50	59	ŏ	Ŏ	ŏ	ŏ
SOURCE # 24	40	20	62	Ŏ	Ŏ	Ŏ	1
SOURCE # 25	40	20	62	0	0	0	1
SOURCE # 26 SOURCE # 27	40 40	20 20	62 62	0 0	0 0	0 0	1
SOURCE # 27	40	20	62	Ŏ	ŏ	Ö	1 1 1
SOURCE # 29	40	20	62	Ŏ	Ŏ	0	$\overline{\mathtt{1}}$
SOURCE # 30	54	42	67	Ŏ	0	0	2
SOURCE # 31 SOURCE # 32	40 40	20 20	62 62	0 0	0 0	0 0	$ar{1}$
SOURCE # 33	40	20	62	ŏ	ŏ	ŏ	i
SOURCE # 34	40	20	62	0	0	Ö	1
SOURCE # 35	40	20	62	0	0	0	1
SOURCE # 36 SOURCE # 37	40 54	20 41	62 67	0 0	0 0	0	1 2
SOURCE # 37	50	30	62	ŏ	ŏ	ŏ	Õ
SOURCE # 39	50	30	62	0	0	0	0
SOURCE # 40	50	30	62	0	0	0	0
SOURCE # 41 SOURCE # 42	48 48	29 29	64 64	0 0	0 0	0 0	0 0
SOURCE # 43	48	29	64	ŏ	ŏ	ŏ	ŏ
SOURCE # 44	46	27	65	0	0	0	0
SOURCE # 45 SOURCE # 46	46 46	27	65	0 0	0 0	0 0	0 0
SOURCE # 46 SOURCE # 47	46 51	27 31	65 62	0	0	0	0
SOURCE # 48	51	31	62	ŏ	0	0	0
SOURCE # 49	51	31	62	0	0	0	0
SOURCE # 50 SOURCE # 51	42 42	21 21	61 61	0 0	0	0 0	1 1
BACKGROUND	42 77	89	ΩŢ	U	U	U	1

STS&PropResults-L-Peak.TXT 52 89

TOTAL wo bkg 67 TOTAL w bkg 77

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

COORDINATE LOCATIONS (Ft)

					X	Υ	Z	DST
RECEIVER # 2	STS-KIP	ruchor		7944 7976		6121 1378	570 548	5267
SOURCE # 1 SOURCE # 2	Primary C SAG Mill	rusner		8071		1311	556	5344
SOURCE # 3	Ball Mill			8081	2 4	1287	556	5345
SOURCE # 4	Rearind M	ill 1		8099	6 4	1228	559	5338
SOURCE # 5	Regrind M	i]] 2		8101		1223	559	5338
SOURCE # 6 SOURCE # 7	Regrind M Regrind M	i]] 3		8103 8099		1219 1208	559 559	5340 5317
SOURCE # 7	Regrind M	111 4 111 5		8100	X 4	1204	559	5319
SOURCE # 9	Regrind M	iii 6		8102	6 4	1199	559	5319
SOURCE # 10	ROŠAHT 1			7190	0 3	5000	680	7624
SOURCE # 11	ROSAHT 2			7185 7180	0 3	4950 4900	680 680	7681 7738
SOURCE # 12 SOURCE # 13	ROSAHT 3 ROSADZ 1			7175		4900 4850	680	7736 7796
SOURCE # 14	ROSADZ 2			7170		4800	680	7853
SOURCE # 15	ROSADZ 3			7165	0 3	4750	680	7911
SOURCE # 16	ROSA BUA			7191		5010	675	7613
SOURCE # 17	JPHT 1 JPHT 2			7820 7815		9000 8950	680 680	3137 3111
SOURCE # 18 SOURCE # 19	JPHT 3			7810		8900	680	3087
SOURCE # 20	JPDZ 1			7805	ŏ 3	8850	680	3065
SOURCE # 21	JPDZ 2			7800	0 3	8800	680	3043
SOURCE # 22	JPDZ3			7821 7821		9010	680 680	3142 3142
SOURCE # 23 SOURCE # 24	JPBU HOSAHT 1			7740		9010 3400	720	7561
SOURCE # 25	HOSAHT 2			7735	0 4	3350	720	7526
SOURCE # 26	HOSAHT 3			7730	0 4	3300	720	7492
SOURCE # 27	HOSADZ 1			7725 7720	0 4	3250 3200	720 720	7459 7426
SOURCE # 28 SOURCE # 29	HOSADZ 2 HOSADZ 3			7720 7715		31.50		7394
SOURCE # 30	HOSABU			7741		3410	720	7568
SOURCE # 31	JOSAHT 1			8060		3700	630	7667
SOURCE # 32	JOSAHT 2			8055 8050		3650 3600	630 630	7610 7553
SOURCE # 33 SOURCE # 34	JOSAHT 3 JOSADZ 1			8045		3550	630	7497
SOURCE # 35	JOSADZ 2			8040		3500	630	7441
SOURCE # 36	JOSADZ 3			8035		3450	630	7385
SOURCE # 37 SOURCE # 38	JOSABU CPDRILL 1			8061 7550		3710 3700	630 460	7678 4626
SOURCE # 36	CPDRILL 1			7545		3650	460	4695
SOURCE # 40	CPDRILL 3			7540	0 3	3600	460	4764
SOURCE # 41	SPDRILL 1			7400		4800	480	5599
SOURCE # 42 SOURCE # 43	SPDRILL 2 SPDRILL 3			7395 7390		4750 4700	480 480	5660 5721
SOURCE # 45	SKPDRILL			7560		2100	420	7108
SOURCE # 45	SKPDRILL	2		7555	0 4	2050	420	7093
SOURCE # 46	SKPDRILL			7550		2000	420	7079
SOURCE # 47 SOURCE # 48	LPDRILL 1			7690 7685		9600 9550	440 440	4310 4299
SOURCE # 46	LPDRILL 2 LPDRILL 3			7680		9500	440	4290
SOURCE # 50	TSFHT			8530	0 3	7500	620	6019
SOURCE # 51	TSFDZ			8525	0 3	7450	620	5959
PROJECTED OCTA								
OCTAVE 31.	5 63	125	250	500	1000) 2K	4K	8000

STS&PropResults-L-Peak.TXT

16K	515QFTOPRESUTES-L-FEAR. 1AT									
LINEAR	64	60	59	60	31	26	0	0	0	
A-wt -7	24	34	43	52	28	26	1	1	-2	

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 3 - STS-Loc1 -

CONTRIBUTOR	SPL	DBA	ATTENU		REF. DISTAN	CE
SOURCE # 1	DB(Lin) DBA 49 24	SPHERE 68	PATH 0	/1000 Ft	BARRIERS O	ATMOS. 2
SOURCE # 1 SOURCE # 2	48 24	68	Ö	0 0	ŏ	2
SOURCE # 3	48 24	68	ŏ	ŏ	ŏ	2
SOURCE # 4	40 19	59	0	Q	0	0
SOURCE # 5	40 19	59	0	0	0	0
SOURCE # 6 SOURCE # 7	40 19 40 19	59 59	0	0 0	0 0	0 0
SOURCE # 8	40 19	59	ŏ	ŏ	ŏ	ŏ
SOURCE # 9	40 19	59	0	0	Ō	Ō
SOURCE # 10	52 27	54	Ŏ	0	0	0
SOURCE # 11 SOURCE # 12	52 27 52 27	54 55	0 0	0 0	0 0	0 0
SOURCE # 12	52 27	55	ŏ	ŏ	ŏ	ŏ
SOURCE # 14	52 27	55	Ō	Ō	Ō	Ō
SOURCE # 15	51 27	55	0	0	0	0
SOURCE # 16 SOURCE # 17	67 55 41 20	55 61	0	0	0 0	0 1
SOURCE # 17	41 20	61	0	ŏ	ŏ	i
SOURCE # 19	41 20	61	ŏ	ŏ	Ŏ	1
SOURCE # 20	41 21	61	0	0	0	1
SOURCE # 21 SOURCE # 22	41 21	61	0	0	0 0	1 1
SOURCE # 22 SOURCE # 23	41 20 55 42	61 66	0	0 0	ŏ	2
SOURCE # 24	37 20	62	ŏ	ŏ	ŏ	2
SOURCE # 25	38 20	62	0	0	0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
SOURCE # 26 SOURCE # 27	38 20	62	0	0	0	2
SOURCE # 27 SOURCE # 28	38 20 38 20	62 62	0	0	0 0	2
SOURCE # 29	38 20	62	ŏ	ŏ	ŏ	2
SOURCE # 30	51 38	69	0	Ō	0	3
SOURCE # 31	36 20	63	0	0	0 0	2
SOURCE # 32 SOURCE # 33	36 20 36 20	63 62	0 0	0 0	0	5
SOURCE # 34	36 20	62	ŏ	ŏ	ŏ	ž
SOURCE # 35	36 20	62	0	Ō	Ö	2
SOURCE # 36	36 20	62 71	0	0	0	2
SOURCE # 37 SOURCE # 38	50 36 57 38	71 55	0	0 0	0 0	0
SOURCE # 39	57 38	55	ŏ	ŏ	ŏ	ŏ
SOURCE # 40	58 38	55	0	Ō	0	0
SOURCE # 41	63 43	50	Ŏ	0	0	0
SOURCE # 42 SOURCE # 43	63 44 64 44	50 49	0	0 0	0 0	0 0
SOURCE # 44	44 26	67	0	0	0	0
SOURCE # 45	45 26	67	0	0	0	0
SOURCE # 46	45 26	67	0	0	0	0
SOURCE # 47 SOURCE # 48	47 27 47 28	65 65	0	0 0	0 0	0
SOURCE # 48	47 28	65 65	ŏ	ŏ	0	ŏ
SOURCE # 50	36 20	63 63	0	0	0	0 0 2 2
SOURCE # 51	36 20	63	0	0	0	2

STS&PropResults-L-Peak.TXT BACKGROUND 0 69

TOTAL wo bkg 72 56 TOTAL w bkg 72 70

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

	_	X	Y	Z	DST
RECEIVER # 3 SOURCE # 1	STS-Loc1	73466 79767	33832 41378	475 548	9831
SOURCE # 2	Primary Crusher SAG Mill	80714	41311	556	10416
SOURCE # 3	Ball Mill	80812	41287	556	10467
SOURCE # 4	Regrind Mill 1	80996	41228	559	10555
SOURCE # 5	Regrind Mill 2	81013	41223	559	10563
SOURCE # 6 SOURCE # 7	Regrind Mill 3 Regrind Mill 4	81031 80991	41219 41208	559 559	10573 10537
SOURCE # 8	Regrind Mill 5	81008	41204	559	10546
SOURCE # 9	Regrind Mill 6	81026	41199	559	10556
SOURCE # 10	ROŠAHT 1	71900	35000	680	1964
SOURCE # 11	ROSAHT 2	71850	34950	680	1975
SOURCE # 12 SOURCE # 13	ROSAHT 3	71800 71750	34900 34850	680 680	1989 2005
SOURCE # 13	ROSADZ 1 ROSADZ 2	71730	34800	680	2024
SOURCE # 15	ROSADZ 3	71650	34750	680	2045
SOURCE # 16	ROSA BUA	71910	35010	675	1961
SOURCE # 17	JРНТ 1	78200	39000	680	7011
SOURCE # 18	JPHT 2	78150	38950	680	6940
SOURCE # 19 SOURCE # 20	JPHT 3 JPDZ 1	78100 78050	38900 38850	680 680	6870 6799
SOURCE # 21	JPDZ 2	78000	38800	680	6729
SOURCE # 22	JPDZ3	78210	39010	680	7025
SOURCE # 23	JPBU	78210	39010	680	7025
SOURCE # 24	HOSAHT 1	77400	43400	720	10348
SOURCE # 25 SOURCE # 26	HOSAHT 2 HOSAHT 3	77350 77300	43350 43300	720 720	10282 10217
SOURCE # 27	HOSADZ 1	77250	43250	720	10152
SOURCE # 28	HOSADZ 2	77200	43200	720	10087
SOURCE # 29	HOSADZ 3	77150	43150	720	10022
SOURCE # 30	HOSABU	77410	43410	720	10361
SOURCE # 31 SOURCE # 32	JOSAHT 1 JOSAHT 2	80600 80550	43700 43650	630 630	12177 12107
SOURCE # 32	JOSAHT 2 JOSAHT 3	80500	43600	630	12038
SOURCE # 34	JOSADZ 1	80450	43550	630	11968
SOURCE # 35	JOSADZ 2	80400	43500	630	11898
SOURCE # 36	JOSADZ 3	80350	43450	630	11828
SOURCE # 37 SOURCE # 38	JOSABU CPDRILL 1	80610 75500	43710 33700	630 460	12191 2038
SOURCE # 39	CPDRILL 2	75450 75450	33650	460	1992
SOURCE # 40	CPDRILL 3	75400	33600	460	1947
SOURCE # 41	SPDRILL 1	74000	34800	480	1105
SOURCE # 42	SPDRILL 2	73950	34750	480	1037
SOURCE # 43	SPDRILL 3	73900	34700 42100	480 420	970 8539
SOURCE # 44 SOURCE # 45	SKPDRILL 1 SKPDRILL 2	75600 75550	42050	420	8478
SOURCE # 46	SKPDRILL 3	75500	42000	420	8417
SOURCE # 47	LPDRILL 1	76900	39600	440	6712
SOURCE # 48	LPDRILL 2	76850	39550	440	6644
SOURCE # 49 SOURCE # 50	LPDRILL 3 TSFHT	76800 85300	39500 37500	440 620	6575 12390
SOURCE # 50 SOURCE # 51	TSFDZ	85250	37300 37450	620	12327
JOURGE # Ja	(U) DE	03230	51 150	0.0	

STS&PropResults-L-Peak.TXT

PROJECTED OCTAVE 16K	31.5	LEVELS: 63	125	250	500	1000	2K	4K	8000
	66	67	66	64	36	32	11	0	0
A-wt -7	26	41	50	55	33	32	12	1	-2
n '									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 4 - STS-Loc3 -

CONTRIBUTOR	ŞPL				REF. DISTAN	•
SOURCE # 1	DB(Lin) DBA 52 27	SPHERE 65	PATH 0	/1000 Ft 0	BARRIERS O	ATMOS. 1
SOURCE # 2	51 26	66	ŏ	ŏ	ŏ	ī
SOURCE # 3	51 26	66	ŏ	ŏ	ŏ	ī
SOURCE # 4	43 20	59	ŏ	ŏ	Ŏ	ō
SOURCE # 5	43 20	59	ŏ	ŏ	Ŏ	Ŏ
SOURCE # 6	43 20	59	ŏ	Ŏ	Ö	Ŏ
SOURCE # 7	43 20	59	Ō	Ŏ	Ŏ	Ŏ
SOURCE # 8	43 20	59	Ō	Ö	Ŏ	Ō
SOURCE # 9	43 20	59	Ö	Ō	0	0
SOURCE # 10	45 22	60	0	0	0	1
SOURCE # 11	45 22	60	0	0	0	1
SOURCE # 12	45 22	60	0	0	0	1
SOURCE # 13	44 22	60	0	0	0	1
SOURCE # 14	44 22	60	0	0	Ō	1
SOURCE # 15	44 22	60	Ō	0	0	1
SOURCE # 16	60 47	62	0	0	0	1
SOURCE # 17	44 22	60	0	Õ	0	1
SOURCE # 18	44 22	60	0	0	0	1
SOURCE # 19	44 22	60	0	0	0	1
SOURCE # 20 SOURCE # 21	44 22 44 22	60 60	0 0	0 0	0 0	1 1
SOURCE # 21	44 22	60 60	0	Ö	ŏ	i
SOURCE # 22	59 46	63	ŏ	ŏ	ŏ	i
SOURCE # 24	42 21	61	ŏ	ŏ	ŏ	î
SOURCE # 25	43 21	61	ŏ	ŏ	ŏ	ī
SOURCE # 26	43 21	61	ŏ	Ŏ	Ŏ	$ar{1}$
SOURCE # 27	43 21	61	Ŏ	Ŏ	Ō	1
SOURCE # 28	43 21	61	0	0	0	1
SOURCE # 29	43 21	61	0	0	0	1
SOURCE # 30	57 44	65	0	0	0	1
SOURCE # 31	39 20	62	Ō	Ō	Ō	1
SOURCE # 32	39 20	62	o o	0	0	1
SOURCE # 33	39 20	62	<u>0</u>	0	0	1
SOURCE # 34	39 20	62	Ŏ	0	0	1
SOURCE # 35	39 20	62	0	0	0	1 1
SOURCE # 36	39 20 53 40	62	0	0	0	2
SOURCE # 37 SOURCE # 38	53 40 48 29	68 64	0 0	0 0	0	ő
SOURCE # 36	48 29	64	Ŏ	ŏ	ŏ	ŏ
SOURCE # 40	48 28	64	ŏ	ŏ	ŏ	ŏ
SOURCE # 41	50 31	62	ŏ	ŏ	ŏ	ŏ
SOURCE # 42	50 31	6 2	ŏ	ŏ	ŏ	ŏ
SOURCE # 43	50 31	62	ŏ	ŏ	ŏ	ŏ
SOURCE # 44	52 32	60	Ŏ	Ŏ	Ŏ	Ö
SOURCE # 45	52 33	60	Ó	0	0	0
SOURCE # 46	52 33	60	0	0	0	Ō
SOURCE # 47	52 33	60	0	0	0	0
SOURCE # 48	52 33	60	0	0	0	0

SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	53 36 36 0	33 20 20 63	5&PropResu 60 62 62	lts-L-Peak 0 0 0 0	0 0 0 0	0 0 0	0 2 2
TOTAL wo bkg TOTAL w bkg	67 67	52 63					
TEMPERATURE 15	C 5	58 F	RELATIVE I	HUMIDITY	70 %	REF. DISTANCE	3

		x	Υ	Z	DST
RECEIVER # 4	STS-Loc3	73386	39149	525	
SOURCE # 1	Primary Crusher	79767	41378	548	6759
SOURCE # 2	SAG Mill	80714	41311	556	7641
SOURCE # 3	Ball Mill	80812	41287	556	7728
SOURCE # 4	Regrind Mill 1	80996	41228	559	7888
SOURCE # 5	Regrind Mill 2	81013	41223	559	7904
SOURCE # 6	Regrind Mill 3	81031	41219	559	7920
SOURCE # 7	Rearind Mill 4	80991	41208	559	7878
SOURCE # 8	Regrind Mill 5	81008	41204	559	7894
SOURCE # 9	Regrind Mill 6	81026	41199	559	7910
SOURCE # 10	ROŠAHT 1	71900	35000	680	4409
SOURCE # 11	ROSAHT 2	71850	34950	680	4473
SOURCE # 12	ROSAHT 3	71800	34900	680	4538
SOURCE # 13	ROSADZ 1	71750	34850	680	4602
SOURCE # 14	ROSADZ 2	71700	34800	680	4666
SOURCE # 15	ROSADZ 3	71650	34750	680	4731
SOURCE # 16	ROSA BUA	71910	35010	675	4396
SOURCE # 17	JPHT 1	78200	39000	680	4818
SOURCE # 18	JPHT 2	78150	38950	680	4770
SOURCE # 19	JPHT 3	78100	38900	680	4723
SOURCE # 20	JPDZ 1	78050	38850	680	4676
SOURCE # 21	JPDZ 2	78000 78310	38800	680	4629 4828
SOURCE # 22	JPDZ3	78210	39010	680	4828
SOURCE # 23 SOURCE # 24	JPBU	78210 77400	39010 43400	680 720	5849
SOURCE # 24 SOURCE # 25	HOSAHT 1 HOSAHT 2	77400	43350	720 720	5779
SOURCE # 25	HOSAHT 2 HOSAHT 3	77300	43300	720	5708
SOURCE # 20	HOSADZ 1	77250	43250	720	5637
SOURCE # 27	HOSADZ 2	77200	43200	720	5567
SOURCE # 29	HOSADZ 3	77150	43150	720	5496
SOURCE # 30	HOSABU	77410	43410	720	5864
SOURCE # 31	JOSAHT 1	80600	43700	630	8530
SOURCE # 32	JOSAHT 2	80550	43650	630	8461
SOURCE # 33	JOSAHT 3	80500	43600	630	8392
SOURCE # 34	JOSADZ 1	80450	43550	630	8323
SOURCE # 35	JOSADZ 2	80400	43500	630	8254
SOURCE # 36	JOSADZ 3	80350	43450	630	8185
SOURCE # 37	JOSABU	80610	43710	630	8544
SOURCE # 38	CPDRILL 1	75500	33700	460	5845
SOURCE # 39	CPDRILL 2	75450	33650	460	5873
SOURCE # 40	CPDRILL 3	75400	33600	460	5903
SOURCE # 41	SPDRILL 1	74000	34800	480	4392
SOURCE # 42	SPDRILL 2	73950	34750	480	4435
SOURCE # 43	SPDRILL 3	73900	34700	480	4478
SOURCE # 44	SKPDRILL 1	75600	42100	420	3690
SOURCE # 45	SKPDRILL 2	75550	42050	420	3620
SOURCE # 46	SKPDRILL 3	75500	42000	420	3550
SOURCE # 47	LPDRILL 1	76900	39600	440	3543
SOURCE # 48	LPDRILL 2	76850	39550	440	3488

STS&PropResults-L-Peak.TXT SOURCE # 49 LPDRILL 3 76800 39500 440 3433

SOURCE # 49 LPDRILL 3 SOURCE # 50 TSFHT SOURCE # 51 TSFDZ	85300	37500 37500 37450	620 620	12027 11985	
DDOJECTED OCTAVE LEVELS					

OCTAVE 16K	31.5		125	250	500	1000	2κ	4K	8000
LINEAR O	63	61	60	59	30	24	0	0	0
A-wt -7	23	35	44	51	27	24	1	1	-2
n									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 5 - STS-HouseSO/GMH -

CONTRIBUTOR	SPL				REF. DISTAN	
SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 14 SOURCE # 15 SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 18 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 23 SOURCE # 25 SOURCE # 25 SOURCE # 27 SOURCE # 27 SOURCE # 28 SOURCE # 30 SOURCE # 31 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 35 SOURCE # 36	DB(Lin) DBA 56 31 57 32 57 32 50 22 50 22 50 21 50 21 50 22 37 20 36 20 36 20 36 20 36 20 36 20 36 20 36 20 36 20 44 42 42	SPHERE 62 661 661 661 661 661	PATH 000000000000000000000000000000000000	/1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATMOS. 1 0 0 0 0 0 0 0 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SOURCE # 35	42 21	61	Ō	Ō	Õ	1.
SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 43	44 26 44 26 44 25 44 25 44 25	67 67 67 67 68	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 1 1 1
SOURCE # 44 SOURCE # 45	45 26 45 26	67 67	0 0	0 0	0 0	0 0

		STS	&PropResu	ılts-L-Pea	k.TXT		
SOURCE # 46	45	26	67	0	0	0	0
SOURCE # 47	48	28	64	0	0	0	0
SOURCE # 48	48	28	64	0	0	0	0
SOURCE # 49	47	28	64	0	0	0	0
SOURCE # 50	49	25	57	0	0	0	0
SOURCE # 51	50	25	56	0	0	0	0
BACKGROUND	0	63					
TOTAL wo bkg	67	50					
TOTAL w bkg	67	63					
TEMPERATURE 15	C 5	8 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	3

		V	V	-7	DCT
RECEIVER # 5	STS-HouseSO/GMH	X 82759	Y 38125	Z 560	DST
SOURCE # 1	Primary Crusher	79767	41378	548	4419
SOURCE # 2	SAG Mill	80714	41311	556	3786
SOURCE # 3	Ball Mill	80812	41287	556	3713
SOURCE # 4	Regrind Mill 1	80996	41228	559	3568
SOURCE # 5	Regrind Mill 2	81013	41223	559	3556
SOURCE # 6	Regrind Mill 3	81031	41219	559	3543
SOURCE # 7 SOURCE # 8	Regrind Mill 4 Regrind Mill 5	80991 81008	41208 41204	559 559	3553 3542
SOURCE # 8	Regrind Mill 5 Regrind Mill 6	81026	41199	559 559	3528
SOURCE # 10	ROSAHT 1	71900	35000	680	11300
SOURCE # 11	ROSAHT 2	71850	34950	680	11362
SOURCE # 12	ROSAHT 3	71800	34900	680	11424
SOURCE # 13	ROSADZ 1	71750	34850	680	11486
SOURCE # 14	ROSADZ 2	71700	34800	680	11548
SOURCE # 15	ROSADZ 3	71650	34750	680	11610 11287
SOURCE # 16 SOURCE # 17	ROSA BUA JPHT 1	71910 78200	35010 39000	675 680	4643
SOURCE # 17	JPHT 2	78150 78150	38950	680	4683
SOURCE # 19	ЈРНТ 3	78100	38900	680	4724
SOURCE # 20	JPDZ 1	78050	38850	680	4765
SOURCE # 21	JPDZ_2	78000	38800	680	4808
SOURCE # 22	JPDZ3	78210	39010	680	4635
SOURCE # 23 SOURCE # 24	JPBU HOSAHT 1	78210 77400	39010 43400	680 720	4635 7521
SOURCE # 24	HOSAHT 2	77400	43350	720	7522
SOURCE # 26	HOSAHT 3	77300	43300	720	7523
SOURCE # 27	HOSADZ 1	77250	43250	720	7525
SOURCE # 28	HOSADZ 2	77200	43200	720	7528
SOURCE # 29	HOSADZ 3	77150	43150	720	7532
SOURCE # 30	HOSABU	77410	43410	720	7521
SOURCE # 31 SOURCE # 32	JOSAHT 1 JOSAHT 2	80600 80550	43700 43650	630 630	5978 5950
SOURCE # 32	JOSAHT 2 JOSAHT 3	80500	43600	630	5923
SOURCE # 34	JOSADZ 1	80450	43550	630	5896
SOURCE # 35	JOSADZ 2	80400	43500	630	5870
SOURCE # 36	JOSADZ 3	80350	43450	630	5844
SOURCE # 37	JOSABU	80610	43710	630	5984
SOURCE # 38 SOURCE # 39	CPDRILL 1 CPDRILL 2	75500 75450	33700 33650	460 460	8501 8570
SOURCE # 39	CPDRILL 2 CPDRILL 3	75400 75400	33600	460	8639
SOURCE # 41	SPDRILL 1	74000	34800	480	9369
SOURCE # 42	SPDRILL 2	73950	34750	480	9433
SOURCE # 43	SPDRILL 3	73900	34700	480	9498
SOURCE # 44	SKPDRILL 1	75600	42100	420	8189
SOURCE # 45	SKPDRILL 2	75550	42050	420	8209

	STS&PropResults-L-Peak.TXT								
SOURCE #	<i>†</i> 46	SKPDRILL	3	•	7	5500	42000	420	8229
SOURCE #		LPDRILL 1			7	6900	39600	440	6043
SOURCE #		LPDRILL 2				6850	39550	440	6079
SOURCE #		LPDRILL 3				6800	39500	440	6116
SOURCE #		TSFHT				5300	37500	620	2617
SOURCE #	<i>†</i> 51	TSFDZ			8	5250	37450	620	2581
PROJECTED OCTAVE 16K	OCTAV 31.5		125	250	500	100	00 2κ	4K	8000
LINEAR O	64	60	57	58	30	23	2 0	0	0
A-wt -7	25	33	41	49	26	2	2 1	1.	-2

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 6 - STS-HouseGMH -

Page 11

			ST	S&PropResi	ults-L-Pea	k.TXT		
SOURCE a	# 43	44	25	67	0	0	0	1
SOURCE ?	# 44	47	27	65	0	0	0	0
SOURCE #	# 45	47	27	65	0	Ó	Ö	Ō
SOURCE #	# 46	46	27	65	Ó	Ŏ	Ö	Õ
SOURCE #	# 47	49	30	63	0	Ò	Ō	Ō
SOURCE #	# 48	49	30	63	Ō	Ŏ	Õ	Õ
SOURCE #	# 49	49	30	63	Ŏ	Ŏ	Õ	Ō
SOURCE #	# 50	46	23	59	Ō	Ŏ	Ŏ	Ŏ
SOURCE #	# 51	46	23	59	0	Ŏ	Ŏ	Õ
BACKGROU	JND	0	65		-	-	-	-
0								
TOTAL WO	bkg	70	53					
TOTAL W	bkg	70	65					
TEMPERATUR	RE 15	C	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	3

RECEIVER # 6	STS-HouseGMH	X 81823	Y 39370	Z 547	DST
SOURCE # 1	Primary Crusher	79767	41378	547 548	2873
SOURCE # 2	SAG Mill	80714	41311	556	2236
SOURCE # 3	Ball Mill	80812	41287	556	2167
SOURCE # 4	Regrind Mill 1	80996	41228	559	2033
SOURCE # 5 SOURCE # 6	Regrind Mill 2	81013	41223	559	2022
SOURCE # 6 SOURCE # 7	Regrind Mill 3	81031	41219	559	2011
SOURCE # 7	Regrind Mill 4 Regrind Mill 5	80991 81008	41208 41204	559 559	2017 2006
SOURCE # 8	Regrind Mill 6	81026	41199	559	1995
SOURCE # 10	ROSAHT 1	71900	35000	680	10843
SOURCE # 11	ROSAHT 2	71850	34950	680	10909
SOURCE # 12	ROSAHT 3	71800	34900	680	10975
SOURCE # 13	ROSADZ 1	71750	34850	680	11041
SOURCE # 14	ROSADZ 2	71700	34800	680	11107
SOURCE # 15	ROSADZ 3	71650	34750	680	11173
SOURCE # 16	ROSA BUA	71910	35010	675	10830
SOURCE # 17 SOURCE # 18	JPHT 1 JPHT 2	78200 78150	39000	680	3644
SOURCE # 18	JPHT 2 JPHT 3	78150 78100	38950 38900	680 680	3699 3754
SOURCE # 20	JPDZ 1	78050	38850	680	3811
SOURCE # 21	JPDZ 2	78000	38800	680	3867
SOURCE # 22	JPDZ3	78210	39010	680	3633
SOURCE # 23	JPBU	78210	39010	680	3633
SOURCE # 24	HOSAHT 1	77400 77350	43400	720	5986
SOURCE # 25	HOSAHT 2	77350	43350	720	5989
SOURCE # 26	HOSAHT 3	77300	43300	720	5994
SOURCE # 27	HOSADZ 1	77250	43250	720	5999
SOURCE # 28 SOURCE # 29	HOSADZ 2 HOSADZ 3	77200 77150	43200 43150	720 720	6005 6012
SOURCE # 29	HOSABU	77130 77410	43130	720 720	5985
SOURCE # 31	JOSAHT 1	80600	43700	630	4500
SOURCE # 32	JOSAHT 2	80550	43650	630	4466
SOURCE # 33	JOSAHT 3	80500	43600	630	4432
SOURCE # 34	JOSADZ 1	80450	43550	630	4400
SOURCE # 35	JOSADZ 2	80400	43500	630	4369
SOURCE # 36	JOSADZ 3	80350	43450	630	4338
SOURCE # 37 SOURCE # 38	JOSABU	80610	43710	630	4507
SOURCE # 36 SOURCE # 39	CPDRILL 1 CPDRILL 2	75500 75450	33700 33650	460 460	8493 8563
SOURCE # 40	CPDRILL 2	75400	33600	460	8634
SOURCE # 41	SPDRILL 1	74000	34800	480	9060
SOURCE # 42	SPDRILL 2	73950	34750	480	9128
					_

Page 12

			STS&	PropResu ¹	ts-L-F	eak.T	XT		
SOURCE #	# 43	SPDRILL 3		•			34700	480	9197
SOURCE #		SKPDRILL	1		75	600	42100	420	6796
SOURCE #		SKPDRILL	2		75	550	42050	420	6822
SOURCE #		SKPDRILL	3				42000	420	6849
SOURCE #		LPDRILL 1					39600	440	4929
SOURCE #		LPDRILL 2					39550	440	4977
SOURCE #		LPDRILL 3					39500	440	5025
SOURCE #		TSFHT					37500	620	3948
SOURCE #	[#] 51	TSFDZ			85	250	37450	620	3928
PROJECTED	OCTAV	/E LEVELS:							
OCTAVE	31.5	63	125	250	500	100	0 2K	4K	8000
16K									
LINEAR	68	63	59	60	34	26	2	0	0
0							_		
A_wt	28	37	43	52	30	26	3	1	2
-7									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 7 - STS-GMH-Rt265 -

CONTRIBUTOR	SPL		-		REF. DISTAN	
SOURCE # 1 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 14 SOURCE # 15 SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 18 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 25 SOURCE # 25 SOURCE # 27 SOURCE # 27 SOURCE # 28 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 34 SOURCE # 35	DB(Lin) DBA 51 26 52 27 52 27 45 20 45 20 45 20 45 20 45 20 45 20 33 19 33 19 33 19 33 19 33 19 33 19 33 19 33 39 33 19 33 39 33 39 37 20 38 20 39 37 20 20 40 40 20 40 40 20 40 40 20	SPHERE 66 65 65 59 59 58 63 63 63 63 63 62 62 62 62 62 62 62 62 62 62 62 62 62	PATH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATMOS. 11 10 00 00 22 22 24 11 11 11 12 22 22 23 11 11
SOURCE # 36 SOURCE # 37 SOURCE # 38 SOURCE # 39	40 20 54 41 40 23 40 23	62 67 70 70	0 0 0 0	0 0 0 0	0 0 0 0	1 2 1 1

Page 13

		ST	S&PropResu	lts-L-Pea	k.TXT		
SOURCE # 40	40	23	70	0	0	0	1
SOURCE # 41	40	22	70	0	0	0	1
SOURCE # 42	40	22	70	0	0	0	1
SOURCE # 43	40	22	70	0	0	0	1
SOURCE # 44	41	23	69	0	0	0	1
SOURCE # 45	41	23	69	0	0	0	1
SOURCE # 46	41	23	69	0	0	0	1
SOURCE # 47	43	24	68	0	0	0	1
SOURCE # 48	43	24	68	0	0	0	1
SOURCE # 49	43	24	68	0	0	0	1
SOURCE # 50	48	24	58	0	0	0	0
SOURCE # 51	48	24	58	. 0	0	0	0
BACKGROUND	8	62					
0							
TOTAL wo bkg	62	46					
TOTAL w bkg	62	62					
		-					
TEMPERATURE 15	C	58 F	RELATIVE H	YTIDIMUH	70 %	REF. DISTANC	E 3

		X	Y	Z	DST
RECEIVER # 7	STS-GMH-Rt265	87322	39946	568	
SOURCE # 1	Primary Crusher	79767	41378	548	7689
SOURCE # 2 SOURCE # 3	SAG Mill	80714	41311	556	6747
SOURCE # 3	Ball Mill	80812	41287	556	6646
SOURCE # 4	Regrind Mill 1	80996	41228	559	6454
SOURCE # 5	Regrind Mill 2	81013	41223	559	6436
SOURCE # 6	Regrind Mill 3	81031	41219	559	6418
SOURCE # 7	Regrind Mill 4	80991	41208	559	6455
SOURCE # 8	Regrind Mill 5	81008	41204	559	6438
SOURCE # 9	Regrind Mill 6	81026	41199	559	6419
SOURCE # 10	ROSAHT 1	71900	35000	680	16196
SOURCE # 11	ROSAHT 2	71850	34950	680	16259
SOURCE # 12	ROSAHT 3	71800	34900	680	16322
SOURCE # 13	ROSADZ 1	71750	34850	680	16385
SOURCE # 14	ROSADZ 2	71700	34800	680	16448
SOURCE # 15	ROSADZ 3	71650	34750	680	16511
SOURCE # 16	ROSA BUA	71910	35010	675	16183
SOURCE # 17	JPHT 1	78200	39000	680	9171
SOURCE # 17	JPHT 2	78150	38950	680	9226
SOURCE # 19	JPHT 3	78130 78100	38900	680	9281
SOURCE # 20	JPDZ 1	78050	38850	680	9337
SOURCE # 21	JPDZ 2	78000	38800	680	9392
SOURCE # 21	JPDZ3	78000 78210	39010	680	9160
SOURCE # 22	JPBU	78210 78210	39010	680	9160
SOURCE # 23	HOSAHT 1	77400	43400	720	10507
SOURCE # 24	HOSAHT 2	77400	43350	720 720	10538
SOURCE # 25	HOSAHT 3	77300	43330	720 720	10558
SOURCE # 20				720 720	
SOURCE # 27	HOSADZ 1 HOSADZ 2	77250 77200	43250 43200	720	10601
SOURCE # 28	HOSADZ Z	77200	43200	720	10633 10665
SOURCE # 29				720	
	HOSABU	77410	43410	720	10500
SOURCE # 31 SOURCE # 32	JOSAHT 1	80600	43700	630	7699
	JOSAHT 2	80550	43650	630	7719
SOURCE # 33	JOSAHT 3	80500	43600	630	7739
SOURCE # 34	JOSADZ 1	80450	43550	630	7759
SOURCE # 35	JOSADZ 2	80400	43500	630	7781
SOURCE # 36	JOSADZ 3	80350	43450	630	7803
SOURCE # 37	JOSABU	80610	43710	630	7695
SOURCE # 38	CPDRILL 1	75500	33700	460	13371
SOURCE # 39	CPDRILL 2	75450	33650	460	13438

Page 14

			STS&F	ropResu	lts-L-	-Peak.	TXT			
SOURCE	# 40	CPDRILL 3		•		75400	3360	0	460	13506
SOURCE	# 41	SPDRILL 1				74000	3480	0	480	14281
SOURCE	# 42	SPDRILL 2			7	73950	3475	0	480	14346
SOURCE	# 43	SPDRILL 3			7	73900	3470	0	480	14411
SOURCE	# 44	SKPDRILL 3	L		7	75600	4210	0	420	11919
SOURCE	# 45	SKPDRILL 2	2		7	75550	4205	0	420	11959
SOURCE	# 46	SKPDRILL 3	3		7	75500	4200	0	420	12000
SOURCE	# 47	LPDRILL 1			7	76900	3960	0	440	10428
SOURCE	# 48	LPDRILL 2			7	6850	3955	0	440	10480
SOURCE	# 49	LPDRILL 3			7	76800	3950	0	440	10532
SOURCE	# 50	TSFHT			8	35300	3750	0	620	3174
SOURCE	# 51	TSFDZ			8	35250	3745	0	620	3244
PROJECTED	OCTAV	E LEVELS:								
OCTAVE	31.5	63	125	250	500	10	00	2ĸ	4K	8000
16K										
LINEAR	60	55	53	53	24	1.	4	0	0	0
0										
A-wt	20	29	36	44	20	1.	4	1	1	-2
-7										
0										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 8 - STS-SOR219 -

CONTRIBUTOR SPL				REF. DISTAN	
DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 55 30	62	0	O O	0	Ĭ
SOURCE # 2 57 32	61	Ŏ	0	0	0
SOURCE # 3 57 32	61	Ó	0	0	0
SOURCE # 4 49 21	57	Ŏ	0	0	0
SOURCE # 5 49 21 SOURCE # 6 49 21	57	0	Ŏ	0	0
SOURCE # 6 49 21	57 57	0	0	0 0	0 0
SOURCE # 7 49 21	57 57	Ö	Ö	Ö	0
SOURCE # 9 49 21	57	Ö	ŏ	Ŏ	Ŏ
SOURCE # 10 34 19	63	ŏ	ŏ	ŏ	2
SOURCE # 11 34 19	63	ŏ	ŏ	ŏ	2
SOURCE # 12 34 19	63	ŏ	ŏ	ŏ	2
SOURCE # 13 34 19	63	ŏ	ŏ	ŏ	2
SOURCE # 14 34 19	63	Ŏ	Ŏ	Õ	$\bar{2}$
SOURCE # 15 34 19	63	0	0	0	2 2
SOURCE # 16 48 34	73	0	0	0	4
SOURCE # 17 40 20	61	0	0	0	1
SOURCE # 18 40 20	62	0	0	0	1
SOURCE # 19 40 20	62	0	0	0	1
SOURCE # 20 40 20	62	Ō	0	0	1
SOURCE # 21 40 20	62	Ō	0	<u>o</u>	1
SOURCE # 22 40 20	<u>62</u>	0	0	0	1 2
SOURCE # 23 55 42	67	0	0	0	
SOURCE # 24 41 21	61	Ö	0	0	1
SOURCE # 25 41 21	61	Ŏ	0	0	1
SOURCE # 26 41 21 SOURCE # 27 41 21	61	0	0	0	1 1
SOURCE # 27 41 21 SOURCE # 28 41 21	61 61	0	0 0	0 0	i
SOURCE # 28 41 21	61	ő	Ö	ŏ	
SOURCE # 20 41 21 SOURCE # 30 56 43	66	ő	Ö	ő	1 2
SOURCE # 31 47 24	58	ŏ	ŏ	ŏ	Õ
SOURCE # 32 47 24	58	ŏ	ŏ	ŏ	ŏ
SOURCE # 33 47 23	58	ŏ	ŏ	ŏ	ŏ
SOURCE # 34 47 23	58	Ŏ	ŏ	ŏ	ŏ
SOURCE # 35 47 23	59	Ö	Ö	Ö	Ŏ
SOURCE # 36 47 23	59	0	0	0	0

Page 15

		ST	S&PropResi	ults-L-Pea	k.TXT		
SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 46 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	62 41 41 40 40 40 44 44 45 45 42 42 67	50 23 23 23 23 23 26 26 26 26 26 21 21 59	S&PropRes 60 69 69 70 70 70 67 67 67 66 67 61	ults-L-Pea 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	111111100000011
TOTAL w bkg TEMPERATURE 15	67	59 58 F	DEL ATTIVE	HUNTOTTV	70 °	DEE DISTANCE	,
I EMPERATORE TO		JO F	KETAITAE	HUMIDITY	70 %	REF. DISTANCE	

3

		X	Y	Z	DST
RECEIVER # 8	STS-SOR219	83995	43603	549	4777
SOURCE # 1 SOURCE # 2	Primary Crusher	79767	41378	548	4777
SOURCE # 2 SOURCE # 3	SAG Mill Ball Mill	80714 80812	41311	556	4001
SOURCE # 3 SOURCE # 4		80996	41287 41228	556 559	3935 3825
SOURCE # 4	Regrind Mill 1 Regrind Mill 2	81013	41223	559	3815
SOURCE # 6	Regrind Mill 3	81031	41219	559	3803
SOURCE # 7	Regrind Mill 4	80991	41208	559	3841
SOURCE # 8	Regrind Mill 5	81008	41204	559	3831
SOURCE # 9	Regrind Mill 6	81026	41199	559	3820
SOURCE # 10	ROSAHT 1	71900	35000	680	14843
SOURCE # 11	ROSAHT 2	71850	34950	680	14912
SOURCE # 12	ROSAHT 3	71800	34900	680	14982
SOURCE # 13	ROSADZ 1	71750	34850	680	15052
SOURCE # 14	ROSADZ 2	71700	34800	680	15122
SOURCE # 15	ROSADZ 3	71650	34750	680	15191
SOURCE # 16	ROSA BUA	71910	35010	675	14829
SOURCE # 17	ЈРНТ 1	78200	39000	680	7401
SOURCE # 18	ЈРНТ 2	78150	38950	680	7472
SOURCE # 19	ЈРНТ 3	78100	38900	680	7542
SOURCE # 20	JPDZ 1	78050	38850	680	7612
SOURCE # 21	JPDZ 2	78000	38800	680	7682
SOURCE # 22	JPDZ3	78210	39010	680	7387
SOURCE # 23	JPBU	78210	39010	680	7387
SOURCE # 24	HOSAHT 1	77400	43400	720	6600
SOURCE # 25 SOURCE # 26	HOSAHT 2	77350	43350	720	6652
SOURCE # 26 SOURCE # 27	HOSAHT 3 HOSADZ 1	77300 77250	43300 43250	720 720	6704 6756
SOURCE # 27	HOSADZ 1 HOSADZ 2	77230 77200	43230	720 720	6809
SOURCE # 28	HOSADZ Z HOSADZ 3	77200 77150	43200	720 720	6862
SOURCE # 29	HOSABU	77410	43410	720	6590
SOURCE # 31	JOSAHT 1	80600	43700	630	3397
SOURCE # 32	JOSAHT 2	80550	43650	630	3446
SOURCE # 33	JOSAHT 3	80500	43600	630	3495
SOURCE # 34	JOSADZ 1	80450	43550	630	3546
SOURCE # 35	JOSADZ 2	80400	43500	630	3597
SOURCE # 36	JOSADZ 3	80350	43450	630	3649

Page 16

			STS8	PropResul	ts-L-	Peak.	TXT			
SOURCE	# 37	JOSABU		•		0610	43710	6	30	3387
SOURCE	# 38	CPDRILL 1			7	5500	33700	4	160	13047
SOURCE	# 39	CPDRILL 2			7	5450	33650	4	160	13118
SOURCE	# 40	CPDRILL 3			7	5400	33600		160	13188
SOURCE	# 41	SPDRILL 1			74	1000	34800	4	180	13319
SOURCE	# 42	SPDRILL 2			7.	3950	34750		180	13389
SOURCE	# 43	SPDRILL 3			7:	3900	34700		180	13460
SOURCE	# 44	SKPDRILL :	1		7.5	5600	42100	4	120	8529
SOURCE	# 45	SKPDRILL 2	2		75	5550	42050		120	8587
SOURCE	# 46	SKPDRILL :	3		7:	5500	42000	4	120	8645
SOURCE	# 47	LPDRILL 1			76	5900	39600	4	40	8147
SOURCE	# 48	LPDRILL 2			76	5850	39550	4	40	8215
SOURCE	# 49	LPDRILL 3			76	5800	39500	4	140	8283
	# 50	TSFHT			85	5300	37500	€	520	6241
SOURCE	# 51	TSFDZ			85	5250	37450	6	520	6280
PROJECTED	OCTAV	VE LEVELS:								
OCTAVE	31.		125	250	500	10	00 2	K	4ĸ	8000
16K		- 					_			
LINEAR	64	59	57	59	30	2	5	0	0	0
0						_		•	•	-
A-wt	25	33	41	51	27	2	5	1	1.	-2
-7										
0										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 9 - STS-5099GMH -

CONTRIBUTOR	SPL DB(Lin) DBA			ATION FROM /1000 Ft	REF. DISTANG	
SOURCE # 1 SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6	47 23 48 24 48 24 41 19 41 19 41 19	SPHERE 69 68 68 59 59	PATH 0 0 0 0 0 0	71000 FE 0 0 0 0 0	0 0 0 0 0	ATMOS. 2 2 2 0 0
SOURCE # 7	41 19	59	0	0	0	0
SOURCE # 8	41 19	59	0	0	0	0
SOURCE # 9	41 19	59	0	0	0	0
SOURCE # 10	32 19	63	0	0	0	3
SOURCE # 11	32 19	63	0	0	0	3
SOURCE # 12	32 19	63	0	0	0	3
SOURCE # 13 SOURCE # 14 SOURCE # 15 SOURCE # 16	32 19 32 19 32 19 45 30	63 63 63 75	0 0 0	0 0 0	0 0 0	3 3 3 5
SOURCE # 17	36 19	62	0	0	0	2
SOURCE # 18	36 19	62	0		0	2
SOURCE # 19	36 19	62	0		0	2
SOURCE # 20	36 19	62	0	0	0	2
SOURCE # 21	36 19	62	0	0	0	2
SOURCE # 22	36 20	63	0	0	0	2
SOURCE # 23 SOURCE # 24 SOURCE # 25 SOURCE # 26	50 36 35 19 35 19 35 19	71 63 63 63	0 0 0	0 0 0 0	0 0 0 0	3 2 2 2
SOURCE # 27	35 19	63	0	0	0	2
SOURCE # 28	35 19	63	0	0	0	2
SOURCE # 29	35 19	63	0	0	0	2
SOURCE # 30	48 34	72	0	0	0	4
SOURCE # 31	37 20	62	0	0	0	2
SOURCE # 32	37 20	62	0	0	0	2
SOURCE # 33	37 20	62	0	0	0	2

Page 17

					L. markens		
	~ -			ults-L-Pea	IK.TXT	•	_
SOURCE # 34	37	20	62	0	0	0	2
SOURCE # 35	37	20	62	0	0	0	2
SOURCE # 36	37	20	62	0	0	0	2
SOURCE # 37	51	37	70	0	0	0	3
SOURCE # 38	39	22	70	0	0	0	1
SOURCE # 39	39	22	70	0	0	0	1
SOURCE # 40	39	22	70	Ō	Ō	Ō	1
SOURCE # 41	38	22	71	Ŏ	Ŏ	Ŏ	1
SOURCE # 42	38	22	71	Ŏ	Ŏ	Õ	$\overline{1}$
SOURCE # 43	38	22	71	Ŏ	Ŏ	Ŏ	$\bar{1}$
SOURCE # 44	39	22	70	Ŏ	ŏ	Ŏ	ī
SOURCE # 45	39	22	70	ŏ	Ŏ	Ŏ	ī
SOURCE # 46	39	22	70	ň	ŏ	ň	1
SOURCE # 47	40	23	7Ŏ	ň	ŏ	ň	ī
SOURCE # 48	40	23	70 70	ŏ	ŏ	ŏ	ī
SOURCE # 49	40	23	70 70	ŏ	ŏ	ŏ	ī
SOURCE # 50	43	21	61	ŏ	ŏ	ŏ	ī
SOURCE # 51	43	21	61	ŏ	ŏ	ŏ	ī
BACKGROUND	ŏ	94	OI	U	U	· ·	-
	U	24					
U							
TOTAL wo bkg	59	43					
TOTAL WO bkg	59	94					
TOTAL W DKG	,,,	34					
TEMPERATURE 15	C	58 F	RFLATTVF	HUMTOTTY	70 %	REE DISTANC	F

RECEIVER # 9	STS-5099GMH	X 90708	Y 38956	Z 576	DST
RECEIVER # 9 SOURCE # 1	Primary Crusher	79767	41378	548	11205
SOURCE # 2	SAG Mill	80714	41311	556	10267
SOURCE # 3	Ball Mill	80812	41287	556	10166
SOURCE # 4	Regrind Mill 1 Regrind Mill 2	80996	41228	559	9974
SOURCE # 5 SOURCE # 6		81013	41223	559	9956
SOURCE # 6	Regrind Mill 3	81031	41219	559	9938
SOURCE # 7 SOURCE # 8	Regrind Mill 4 Regrind Mill 5	80991 81008	41208 41204	559	9974 9957
SOURCE # 8	Regrind Mill 5 Regrind Mill 6	81026	41199	559 559	9937
SOURCE # 10	ROSAHT 1	71900	35000	680	19219
SOURCE # 11	ROSAHT 2	71850	34950	680	19279
SOURCE # 12	ROSAHT 3	71800	34900	680	19338
SOURCE # 13	ROSADZ 1	71750	34850	680	19397
SOURCE # 14	ROSADZ 2	71700	34800	680	19457
SOURCE # 15	ROSADZ 3	71650	34750	680	19516
SOURCE # 16	ROSA BUA	71910	35010	675	19207
SOURCE # 17 SOURCE # 18	JPHT 1 JPHT 2	78200 78150	39000 38950	680 680	12508 12558
SOURCE # 18	JPHT 3	78100 78100	38900	680	12608
SOURCE # 20	JPDZ 1	78050	38850	680	12658
SOURCE # 21	JPDZ 2	78000	38800	680	12709
SOURCE # 22	JPDZ3	78210	39010	680	12498
SOURCE # 23	JPBU	78210	39010	680	12498
SOURCE # 24	HOSAHT 1	77400	43400	720	14031
SOURCE # 25	HOSAHT 2	77350	43350	720	14062
SOURCE # 26 SOURCE # 27	HOSAHT 3 HOSADZ 1	77300	43300	720	14094
SOURCE # 27 SOURCE # 28	HOSADZ 1 HOSADZ 2	77250 77200	43250 43200	720 720	14127 14159
SOURCE # 28	HOSADZ Z HOSADZ 3	77200	43150	720	14192
SOURCE # 30	HOSABU	77410	43410	720	14024
SOURCE # 31	JOSAHT 1	80600	43700	630	11166
SOURCE # 32	JOSAHT 2	80550	43650	630	11190
SOURCE # 33	JOSAHT 3	80500	43600	630	11214

Page 18

			STS&	PropResu]	ts-L-F	eak.	TXT			
SOURCE #	34	JOSADZ 1		•		450	4355	0	630	11239
SOURCE #	35	JOSADZ 2			80	400	4350	0	630	11265
SOURCE #	36	JOSADZ 3				350	4345		630	11291
SOURCE #	37	JOSABU				610	4371	-	630	11161
SOURCE #	38	CPDRILL 1				500	3370		460	16091
SOURCE #	39	CPDRILL 2				450	3365		460	16154
SOURCE #	40	CPDRILL 3				400	3360		460	16218
SOURCE #	41	SPDRILL 1				000	3480		480	17217
SOURCE #	42	SPDRILL 2				950	3475		480	17278
SOURCE #	43	SPDRILL 3				900	3470		480	17338
SOURCE #	44	SKPDRILL 2				600	4210		420	15432
SOURCE #	45 46	SKPDRILL 2 SKPDRILL 3	•			550	4205		420	15471
SOURCE #	47	LPDRILL 1	•			500 900	4200 3960		420 440	15510 13823
SOURCE #	48	LPDRILL 2				850	3955		440	13871
SOURCE #	49	LPDRILL 3				800	3950		440	13919
SOURCE #	50	TSFHT				300	3750		620	5600
SOURCE #	51	TSFDZ				250	3745		620	5662
					0.5		57.5	•	OLO.	3002
PROJECTED (OCTAV	/E LEVELS:								
OCTAVE	31.5	63	125	250	500	10	00	2K	4K	8000
16K										
LINEAR	56	52	50	49	18		6	0	0	0
0										
A_wt	17	26	33	41	15		6	1	1	-2
- 7										
0										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 10 - STS-SR29/204 -

CONTRIBUTOR SPL				REF. DISTAN	
DB(Lin) D SOURCE # 1 47 23	DBA SPHERE 69	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 47 23	69	0	0 0	0	2
SOURCE # 3 48 24		ŏ	ŏ	ň	5
SOURCE # 4 40 19	59	ň	ň	ň	ก็
SOURCE # 5 40 19		ŏ	ň	ŏ	ŏ
SOURCE # 6 40 19		ŏ	ŏ	ŏ	ŏ
SOURCE # 7 40 19		Ŏ	Ŏ	Ŏ	ŏ
SOURCE # 8 40 19		Ö	Ŏ	Ō	Ō
SOURCE # 9 40 19	59	0	0	0	0
SOURCE # 10 32 19		0	0	0	3
SOURCE # 11 32 19		0	0	0	3
SOURCE # 12 32 19		0	0	0	3
SOURCE # 13 32 19		Ō	Ō	Ō	3
SOURCE # 14 32 19		Ō	0	Ō	3
SOURCE # 15 32 19		0	0	0	3
SOURCE # 16 45 30		Ü	0	Ü	5
SOURCE # 17 35 19		Ŭ	0	Ŏ	2
SOURCE # 18 35 19 SOURCE # 19 35 19		Ŭ	0	Ŏ	2
		0	0	Ü	2
SOURCE # 20 35 19 SOURCE # 21 35 19		0	0	V	2
SOURCE # 21 33 19 SOURCE # 22 35 19		ν V	0	V	2 2
SOURCE # 22 33 19 SOURCE # 23 49 35		Ň	Ŏ	X	4
SOURCE # 24 34 19		ň	Ö	ň	2
SOURCE # 25 34 19		ŏ	ŏ	ň	2 2
SOURCE # 26 34 19		ŏ	ŏ	ň	2
SOURCE # 27 34 19		ŏ	ŏ	ŏ	2
SOURCE # 28 34 19		Ŏ	Ŏ	Ŏ	2 2
SOURCE # 29 34 19		ŏ	ŏ	Ŏ	2
SOURCE # 30 48 34		0	Ö	Ō	4

Page 19

STS&PropResults-L-Peak.TXT									
SOURCE # 31 SOURCE # 32 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 41 SOURCE # 42 SOURCE # 43 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	3333333533333333443440 333333333333333443440	20 20 20 20 20 20 20 27 22 22 21 21 22 22 22 22 22 21 21 21 22 22	S&PropResu 62 62 62 62 62 62 71 71 71 71 71 70 70 70 70 70 70	1ts-L-Pea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	k.TXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	222223111111111111111111111111111111111		
TOTAL wo bkg TOTAL w bkg	58 58	42 93							
TEMPERATURE 15	С	58 F	RELATIVE	YTIGIMUH	70 %	REF. DISTAN	NCE 3		

		X	Υ	Z	DST
RECEIVER # 10	STS-SR29/204	91534	39553	576	
SOURCE # 1	Primary Crusher	79767	41378	548	11907
SOURCE # 2	SAG Mill	80714	41311	556	10961
SOURCE # 3	Ball Mill	80812	41287	556	10860
SOURCE # 4	Regrind Mill 1	80996	41228	559	10670
SOURCE # 5 SOURCE # 6	Regrind Mill 2	81013	41223	559	10652
SOURCE # 6	Regrind Mill 3	81031	41219		10634
SOURCE # 7	Regrind Mill 4 Regrind Mill 5	80991	41208	559	10672
SOURCE # 8	Regrind Mill 5	81008	41204	559	10654
SOURCE # 9	Regrind Mill 6	81026	41199	559	10636
SOURCE # 10	ROŠAHT 1	71900	35000	680	20155
SOURCE # 11	ROSAHT 2	71850	34950	680	20215
SOURCE # 12	ROSAHT 3	71800	34900	680	20275
SOURCE # 13	ROSADZ 1	71750	34850	680	20335
SOURCE # 14	ROSADZ 2	71700	34800	680	20395
SOURCE # 15	ROSADZ 3	71650	34750	680	20456
SOURCE # 16	ROSA BUA	71910	35010	675	20143
SOURCE # 17	ЈРНТ 1	78200	39000	680	13345
SOURCE # 18	ЈРНТ 2	78150	38950	680	13397
SOURCE # 19	ЈРНТ 3	78100	38900	680	13450
SOURCE # 20	JPDZ 1	78050	38850	680	13502
SOURCE # 21	JPDZ 2	78000	38800	680	13555
SOURCE # 22	JPDZ3	78210	39010	680	13335
SOURCE # 23	JPBU	78210	39010	680	13335
SOURCE # 24	HOSAHT 1	77400	43400	720	14648
SOURCE # 25	HOSAHT 2	77350	43350	720	14684
SOURCE # 26	HOSAHT 3	77300	43300	720	14719
SOURCE # 27	HOSADZ 1	77250	43250	720	14755
SOURCE # 28	HOSADZ 2	77200	43200	720	14791
SOURCE # 29	HOSADZ 3	77150	43150	720	14827
SOURCE # 30	HOSABU	77410	43410	720	14641

HGMWC.TXT GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 1 - Greg561 -

CONTRIBUTOR	 	SPL Lin) DBA	DBA SPHERE	ATTENU	ATION FROM /1000 Ft	REF. DISTAN BARRIERS	CE ATMOS.
SOURCE # 1	52	27	65	0	0	0	1
SOURCE # 2	52	27	65	Ō	Ŏ	Ō	1
SOURCE # 3	52	27	65	0	0	0	1
SOURCE # 4	44	20	59	0	0	0	0
SOURCE # 5	44	20	59	0	0	0	0
SOURCE # 6	44	20	59	0	Ō	Ō	Ō
SOURCE # 7	44	20	59	0	Ō	Õ	0
SOURCE # 8	44	20	59	0	0	0	0
SOURCE # 9	44	20	59	0	0	0	0
SOURCE # 10	43	21	61	0	0	0	<u> </u>
SOURCE # 11 SOURCE # 12	43 43	21 21	61	0 0	0	0	1 1 1
SOURCE # 12	43	21	61 61	Ö	0 0	ŏ	1
SOURCE # 14	43	21	61	ŏ	ŏ	ŏ	1
SOURCE # 15	42	21	61	ŏ	ŏ	ŏ	$egin{smallmatrix} 1 \\ 1 \end{bmatrix}$
SOURCE # 16	58	45	64	ŏ	ŏ	Ŏ	1
SOURCE # 17	46	23	59	Ō	Ō	Ō	0
SOURCE # 18	46	23	59	0	0	0	0
SOURCE # 19	46	23	59	0	Ō	Ō	Ō
SOURCE # 20	46	23	59	0	0	0	0
SOURCE # 21	46	23	59	0	0	0	0
SOURCE # 22 SOURCE # 23	46 61	23 48	59 61	0	0	0 0	0 1
SOURCE # 23	39	20	62	ŏ	0 0	0	i
SOURCE # 25	39	20	62	ŏ	ŏ	ŏ	ī
SOURCE # 26	40	20	62	Ŏ	ŏ	Ŏ	$\bar{1}$
SOURCE # 27	40	20	62	Ō	Ō	Ŏ	1
SOURCE # 28	40	20	62	0	0	0	1
SOURCE # 29	40	20	62	0	0	Ö	<u>1</u> 2
SOURCE # 30	54	41	68	0	0	0	2
SOURCE # 31	39	20	62	0	0	0	1
SOURCE # 32 SOURCE # 33	39 39	20 20	62 62	0 0	0 0	0	1 1
SOURCE # 33	39	20	62	ŏ	Ö	Ö	1
SOURCE # 35	39	20	62	ŏ	ŏ	ŏ	i
SOURCE # 36	39	20	62	Ŏ	Ö	Ö	1
SOURCE # 37	53	39	68	Ō	Ö	Ō	2
SOURCE # 38	56	36	57	0	0	0	0
SOURCE # 39	56	36	<u>57</u>	0	0	0	0
SOURCE # 40	55	36	57	0	0	0	0
SOURCE # 41 SOURCE # 42	53 53	33 33	60 60	0 0	0	0	0 0
SOURCE # 42 SOURCE # 43	53 52	33	60	Ö	ŏ	ő	ŏ
SOURCE # 44	46	27	66	ŏ	ŏ	ŏ	ŏ
SOURCE # 45	46	27	66	ŏ	ŏ	ŏ	ŏ
SOURCE # 46	46	27	66	Õ	Ō	Ō	0
SOURCE # 47	50	31	62	0	0 0 0	0	0
SOURCE # 48	50	31	62	0		0	Ŏ
SOURCE # 49	50	31	62	0	0	0	0 1
SOURCE # 50	39	20	62 63	0 0	0 0	0 0	1 1
SOURCE # 51 BACKGROUND	39 0	20 0	62	U	U	U .	.1.
[]	U	U					
•							
TOTAL wo bkg	67	52					
TOTAL w bkg	67	52					

					x	Υ	Z	DST
SOURCE # # 12 SOURCE # # 13 SOURCE # # 13 SOURCE # # 14 SOURCE # # 15 SOURCE # 15 SOURCE # # 15	Regrind M ROSAHT 1 ROSAHT 2 ROSAHT 3 ROSADZ 1 ROSADZ 2 ROSADZ 3 ROSADZ 3 ROSADZ 3 ROSADZ 3 ROSADZ 1 ROSADZ 2 ROSADZ 1 ROSADZ 3 ROSA BUA ROSADZ 1 ROSADZ 1 ROSADZ 1 ROSAHT 3 ROSAHT 1 ROSAHT 1 ROSAHT 1 ROSADZ 2 ROSADZ 3 ROSADZ 3 ROSADZ 3 ROSADZ 3 ROSADZ 3 ROSADZ 1 ROSADZ 1 ROSADZ 1 ROSADZ 1 ROSADZ 3 RO	iill 1 iill 2 iill 3 iill 4 iill 5 iill 6		7738 7976 8071 8081 8099 8101 8103 8099 8100 7185 7180 7175 7170 7165 7171 7820 7815 7810 7805 7800 7821 7740 7735 7741 8060 8055 8045 8055 8045 8040 8035 8040 8035 7545 77400 7395 7390	474121109 4112109 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 411210 4112	38 711 87 87 87 87 87 87 87 87 87 87 87 87 87	5569999999000066880000000000000000000000	6679 7040 7080 7085 7080 7085 7086 7085 7086 7085 7086 7085 7086 7085 7086 7085 7086 7086 7087 7086 7087 7086 7087 7088 7088
SOURCE # 42	SPDRILL 2 SPDRILL 3 SKPDRILL SKPDRILL SKPDRILL SKPDRILL LPDRILL 1	1 2 3		7395	0 347 0 347 0 421 0 420 0 420 0 396	50 00 00 50 00 00	480	3456
SOURCE # 49 SOURCE # 50 SOURCE # 51	TSFHT			7680 8530 8525	0 375	00	440 620 620	4401 8261 8199
PROJECTED OCT OCTAVE 31 16K	AVE LEVELS:	125 2	50	500	1000	2κ	4K	8000
	62	60	59	30	24	1	0	0
			Page	2				

HGMWC.TXT

0 A-wt 23 36 44 50 27 24 2 1 -2 -7

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 2 - Greg565 -

PROJECT - HGMWC

CONTRIBUTOR	SPL	DBA	ATTENU	ATION FROM	REF. DISTAN	CE
SOURCE # 1	DB(Lin) DBA 52 27	SPHERE 65	PATH 0	/1000 Ft	BARRIERS	ATMOS. 1
SOURCE # 1	52 27	65	ŏ	0 0	0 0	1
SOURCE # 3	52 27	65	ŏ	ŏ	ŏ	ī
SOURCE # 4	44 20	59	0	0	0	Ŏ.
SOURCE # 5 SOURCE # 6	44 20 44 20	59 59	0	0 0	0	0 0
SOURCE # 7	44 20	59 59	ŏ	ŏ	ŏ	ŏ
SOURCE # 8	44 20	59	Ŏ	Ö	Ó	0
SOURCE # 9	44 20	59	0	0	0	o o
SOURCE # 10 SOURCE # 11	43 21 43 21	60 60	0	0 0	0 0	1 1
SOURCE # 12	43 21	60	ŏ	ŏ	ŏ	ī
SOURCE # 13	43 21	61	0	0	0	1
SOURCE # 14 SOURCE # 15	43 21 43 21	61	0	0	0	1
SOURCE # 15	43 21 58 45	61 64	0	0 0	0 0	1 1
SOURCE # 17	46 23	59	ŏ	ŏ	ŏ	õ
SOURCE # 18	46 23	59	0	0	Õ	o O
SOURCE # 19 SOURCE # 20	46 23 47 23	59 58	0 0	0 0	0 0	0 0
SOURCE # 20	47 23	58	ŏ	ŏ	ŏ	ŏ
SOURCE # 22	46 23	59	Ō	0	0	0
SOURCE # 23	61 49	61	0	0	0	1
SOURCE # 24 SOURCE # 25	40 20 40 20	62 62	0	0 0	0	1 1
SOURCE # 26	40 20	62	ŏ	ŏ	ŏ	1
SOURCE # 27	40 20	62	0	0	0	1
SOURCE # 28 SOURCE # 29	40 20 40 20	62 62	0	0 0	0	1 1
SOURCE # 29	54 41	67	Ö	ő	Ö	2
SOURCE # 31	39 20	62	Ō	0	0	1
SOURCE # 32	39 20	62	0	0	0	1
SOURCE # 33 SOURCE # 34	39 20 39 20	62 62	0	0 0	0	1 1
SOURCE # 35	39 20	62	ŏ	ŏ	ŏ	1
SOURCE # 36	39 20	62	0	0	0	1
SOURCE # 37 SOURCE # 38	53 40 56 36	68 57	0	0 0	0	2 0
SOURCE # 39	56 36	57 57	ŏ	ŏ	ŏ	ŏ
SOURCE # 40	55 36	57	Ō	0	0	0
SOURCE # 41	53 33	59 60	0	0	0	o O
SOURCE # 42 SOURCE # 43	53 33 53 33	60 60	0 0	0 0	0	0 0
SOURCE # 44	46 27	65	0	0 0	0	0
SOURCE # 45	46 27	65	0	0	0	Ŏ
SOURCE # 46 SOURCE # 47	46 27 51 31	65 62	0 0	0	0 0	0 0
SOURCE # 47	51 31	61	ŏ	ŏ	0	0
SOURCE # 49	51 31	61	0	Ó	0	0
SOURCE # 50 SOURCE # 51	39 20 39 20	62 62	0 0	0 0 0 0	0	1
BACKGROUND	0 0	UΖ	U	U	U	1
3	5					

n

HGMWC.TXT

TOTAL wo bkg 67 52 TOTAL w bkg 67 52

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

RECEIVER # 2	Greg565	X 77248	Y 35342	z 520	DST
SOURCE # 1 SOURCE # 2	Primary Crusher SAG Mill	79767 80714	41378 41311	548 556	6540 6903
SOURCE # 3	Rall Mill	80812	41287	556	6932
SOURCE # 4	Regrind Mill 1 Regrind Mill 2	80996	41228	559	6978
SOURCE # 5 SOURCE # 6	Regrind Mill 2 Regrind Mill 3	81013	41223 41219	559	6983
SOURCE # 6 SOURCE # 7	Regrind Mill 3 Regrind Mill 4	81031 80991	41219	559 559	6989 6958
SOURCE # 8	Regrind Mill 5	81008	41204	559	6964
SOURCE # 9	Regrind Mill 6	81026	41199	559	6969
SOURCE # 10 SOURCE # 11	ROSAHT 1 ROSAHT 2	71900 71850	35000 34950	680 680	5361 5414
SOURCE # 12	ROSAHT 3	71800	34900	680	5468
SOURCE # 13	ROSADZ 1	71750	34850	680	5522
SOURCE # 14 SOURCE # 15	ROSADZ 2	71700	34800	680	5576
SOURCE # 15	ROSADZ 3 ROSA BUA	71650 71910	34750 35010	680 675	5631 5350
SOURCE # 17	JPHT 1	78200	39000	680	3783
SOURCE # 18	JPHT 2	78150	38950	680	3722
SOURCE # 19 SOURCE # 20	JPHT 3 JPDZ 1	78100 78050	38900 38850	680 680	3662 3602
SOURCE # 21	JPDZ 1	78000	38800	680	3542
SOURCE # 22	JPDZ3	78210	39010	680	3795
SOURCE # 23	JPBU	78210	39010	680	3795
SOURCE # 24 SOURCE # 25	HOSAHT 1 HOSAHT 2	77400 77350	43400 43350	720 720	8061 8011
SOURCE # 26	HOSAHT 3	77300	43300	720	7960
SOURCE # 27	HOSADZ 1	77250	43250	720	7910
SOURCE # 28 SOURCE # 29	HOSADZ 2	77200 77150	43200 43150	720	7860 7811
SOURCE # 29	HOSADZ 3 HOSABU	77130 77410	43410	720 720	8072
SOURCE # 31	JOSAHT 1	80600	43700	630	9005
SOURCE # 32	JOSAHT 2	80550	43650	630	8940
SOURCE # 33 SOURCE # 34	JOSAHT 3 JOSADZ 1	80500 80450	43600 43550	630 630	8875 8811
SOURCE # 35	JOSADZ 1	80400	43500	630	8746
SOURCE # 36	JOSADZ 3	80350	43450	630	8681
SOURCE # 37 SOURCE # 38	JOSABU CPDRILL 1	80610	43710	630	9018
SOURCE # 38	CPDRILL 2	75500 75450	33700 33650	460 460	2399 2469
SOURCE # 40	CPDRILL 3	75400	33600	460	2540
SOURCE # 41	SPDRILL 1	74000	34800	480	3293
SOURCE # 42 SOURCE # 43	SPDRILL 2 SPDRILL 3	73950 73900	34750 34700	480 480	3350 3409
SOURCE # 44	SKPDRILL 1	75600	42100	420	6956
SOURCE # 45	SKPDRILL 2	75550	42050	420	6920
SOURCE # 46	SKPDRILL 3	75500 76900	42000	420	6884
SOURCE # 47 SOURCE # 48	LPDRILL 1 LPDRILL 2	76900 76850	39600 39550	440 440	4272 4227
SOURCE # 49	LPDRILL 3	76800	39500	440	4182
SOURCE # 50 SOURCE # 51	TSFHT TSFDZ	85300 85250	37500 37450	620 620	8336 8275
200.02 " 31		05250	21-120	020	0213

HGMWC.TXT

PROJECTED OCTAVE 16K	31.5		125	250	500	1000	2K	4K	8000
LINEAR O	63	62	61	59	31	25	1	0	0
A-wt -7	23	36	44	51	28	25	2	1	-2
'n									

APPENDIX G

Soundcalc Output - Haile Gold Mine Property Boundary Results

			STS&	PropResu	lts-L-F	eak.	тхт			
SOURCE #	31	JOSAHT 1	0.00	орсоа		600	43700	6	30	11694
SOURCE #	32	JOSAHT 2			80	550	43650	6	30	11723
SOURCE #	33	JOSAHT 3			80	500	43600	6	30	11752
SOURCE #	34	JOSADZ 1)450	43550			11782
SOURCE #	35	JOSADZ 2				400	43500			11813
SOURCE #	36	JOSADZ 3				350	43450			11843
SOURCE #	37	JOSABU				610	43710			11688
SOURCE #		CPDRILL 1				500	33700			17069
SOURCE #		CPDRILL 2				450	33650			17133
		CPDRILL 3				400	33600			17197
SOURCE #	41	SPDRILL 1				1000	34800		80	18167
		SPDRILL 2				3950	34750			18228
		SPDRILL 3				900	34700			18289
		SKPDRILL :				600	42100		20	16137
			2			5550	42050 42000		20 20	16178 16220
	46 47	SKPDRILL :	•			500 5900	39600		40	14634
	1.1	LPDRILL I				5850	39550			14684
		LPDRILL 3				5800	39500		40	14734
SOURCE #		TSFHT				300	37500		20	6563
SOURCE #		TSFDZ				250	37450		20	6626
JOUNCE T	J .	15102			0.5	,,,,	37 430	U		0020
PROJECTED O	CTAV	E LEVELS:								
OCTAVE	31.5		125	250	500	100	00 21	K	4ĸ	8000
16K										
LINEAR	56	52	49	48	17		5	0	0	0
0										
A_wt	16	25	33	40	13		5	1	1	-2
-7										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 11 - Prop-1 -

DB(Lin) DBA
SOURCE # 2 51 26 66 0 0 0 1 SOURCE # 3 51 26 66 0 0 0 1 SOURCE # 4 44 20 59 0 0 0 0 0 SOURCE # 5 44 20 59 0 0 0 0 0 SOURCE # 6 44 20 59 0 0 0 0 0 SOURCE # 7 44 20 59 0 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 0 0 SOURCE # 9 44 20 59 0 0 0 0 0 0 SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 3 51 26 66 0 0 0 1 SOURCE # 4 44 420 59 0 0 0 0 SOURCE # 5 44 20 59 0 0 0 0 SOURCE # 6 44 20 59 0 0 0 0 SOURCE # 7 44 20 59 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 SOURCE # 9 44 20 59 0 0 0 0 SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 4 44 20 59 0 0 0 0 SOURCE # 5 44 20 59 0 0 0 0 SOURCE # 6 44 20 59 0 0 0 0 SOURCE # 7 44 20 59 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 SOURCE # 9 44 20 59 0 0 0 0 SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 5 44 20 59 0 0 0 0 0 0 SOURCE # 6 44 20 59 0 0 0 0 0 0 SOURCE # 7 44 20 59 0 0 0 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 0 0 0 0 SOURCE # 9 44 20 59 0 0 0 0 0 0 0 0 SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 6 44 20 59 0 0 0 0 0 0 SOURCE # 7 44 20 59 0 0 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 0 0 0 SOURCE # 9 44 20 59 0 0 0 0 0 0 0 SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 7 44 20 59 0 0 0 0 0 SOURCE # 8 44 20 59 0 0 0 0 0 0 SOURCE # 9 44 20 59 0 0 0 0 0 0 0 SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 3
SOURCE # 8 44 20 59 0 0 0 SOURCE # 9 44 20 59 0 0 0 SOURCE # 10 33 19 63 0 0 0 SOURCE # 11 33 19 63 0 0
SOURCE # 9 44 20 59 0 0 0 SOURCE # 10 33 19 63 0 0 0 SOURCE # 11 33 19 63 0 0
SOURCE # 10 33 19 63 0 0 0 3 SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 11 33 19 63 0 0 0 3
SOURCE # 12 33 19 63 0 0 0 3
SOURCE # 13 33 19 63 0 0 0 3
SOURCE # 14 33 19 63 0 0 0 3
SOURCE # 15 32 19 63 0 0 0 3
SOURCE # 16 46 31 74 0 0 0 5
SOURCE # 17 37 20 62 0 0 0 2
SOURCE # 18 37 20 62 0 0 0 2
SOURCE # 19 37 20 62 0 0 0 2
SOURCE # 20 37 20 62 0 0 0 2
SOURCE # 21 37 20 62 0 0 0 2
SOURCE # 22 37 20 62 0 0 0 2
SOURCE # 23 51 38 70 0 0 0 3
SOURCE # 24 37 20 62 0 0 2
SOURCE # 25 37 20 62 0 0 0 2
SOURCE # 26 37 20 62 0 0 2
SOURCE # 27 37 20 62 0 0 2

Page 21

		ST	S&PropResi	ults-L-Pea	k.TXT		
SOURCE # 28 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	37 37 51 40 40 40 40 53 39 39 41 41 42 42 42 42 42 42 42	ST 20 20 38 20 20 20 20 20 42 22 22 22 22 23 23 23 24 24 24 21 0	S&PropResi 62 62 70 62 62 62 62 62 67 70 70 70 70 70 69 69 69 69 69 61 61	Ults-L-Pea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	k.TXT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	223111111211111111111111111111111111111
TOTAL wo bkg TOTAL w bkg	61 61	45 45					
TEMPERATURE 15	C 5	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTAN	ICE 3

	л		B 1	X	42021	Z	DST
RECEIVER		11	Prop-1	87947	42931	568	9226
SOURCE	#	1	Primary Crusher	79767	41378 41311	548	8326 7411
SOURCE	#	2	SAG Mill	80714 80812	41287	556	7321
SOURCE	#		Ball Mill	80996	41207	556	7156
SOURCE SOURCE	# #	4 5	Regrind Mill 1	81013	41223	559 559	7130
	#	6	Regrind Mill 2 Regrind Mill 3	81031	41219	559	7141
SOURCE SOURCE	#	7		80991	41219	559	7124
SOURCE	#	8	Regrind Mill 4 Regrind Mill 5	81008	41208	559	7150
SOURCE	#	9	Regrind Mill 6	81026	41199	559	7134
SOURCE	#	10	ROSAHT 1	71900	35000	680	17900
SOURCE	#	11	ROSAHT 2	71850	34950	680	17967
SOURCE	#	12	ROSAHT 3	71800	34900	680	18034
SOURCE	#	13	ROSADZ 1	71750	34850	680	18101
SOURCE	#	14	ROSADZ 2	71700	34800	680	18168
	#	1 5	ROSADZ 3	71650	34750	680	18235
SOURCE	#	16	ROSA BUA	71910	35010	675	17886
SOURCE	#	17	JPHT 1	78200	39000	680	10510
SOURCE	#	18	JPHT 2	78150	38950	680	10575
SOURCE	#	19	JPHT 3	78100	38900	680	10640
SOURCE	#	20	JPDZ 1	78050	38850	680	10705
SOURCE	#	21	JPDZ 2	78000	38800	680	10771
SOURCE	#	22	JPDZ3	78210	39010	680	10497
SOURCE	#	23	JPBU	78210	39010	680	10497
SOURCE	#	24	HOSAHT 1	77400	43400	720	10558
SOURCE	#	25	HOSAHT 2	77350	43350	720	10606
	#	26	HOSAHT 3	77300	43300	720	10654
SOURCE	#	27	HOSADZ 1	77250	43250	720	10702

Page 22

			STS&	PropResu	lts-L-I	Peak.	TXT			
SOURCE #	28	HOSADZ 2		•	77	7200	43200		720	10751
SOURCE #	29	HOSADZ 3				7150	43150		720	10800
SOURCE #	30	HOSABU				7410	43410		720	10549
SOURCE #	31	JOSAHT 1)600	43700		630	7387
SOURCE #	32	JOSAHT 2)550	43650		630	7432
SOURCE #	33	JOSAHT 3)500	43600		630	7477
SOURCE #	34	JOSADZ 1)450	43550		630	7522
SOURCE #	35	JOSADZ 2				1400	43500		630	7568
SOURCE #	36	JOSADZ 3				350	43450		630	7614
SOURCE #	37	JOSABU)610	43710		630	7378
SOURCE #	38	CPDRILL 1				5500	33700		460	15496
SOURCE #	39	CPDRILL 2				450	33650		460	15566
SOURCE #		CPDRILL 3				400	33600		460	15636
SOURCE #		SPDRILL 1				1000	34800		480	16144
		SPDRILL 2				3950	34750		480	16212 16281
SOURCE #	43	SPDRILL 3				3900 5600	34700 42100		480 420	12375
SOURCE # SOURCE #	44	SKPDRILL I))			5550	42050		420	12429
SOURCE #		SKPDRILL 3	_			5500	42000		420	12482
SOURCE #		LPDRILL 1	,			5900	39600		440	11539
SOURCE #	48	LPDRILL 2				5850	39550		440	11601
SOURCE #	49	LPDRILL 3				5800	39500		440	11663
SOURCE #		TSFHT				300	37500		620	6041
SOURCE #	51	TSFDZ				5250	37450		620	6108
SOURCE #	J.A.	13102			0.	, , ,	57 150		020	0200
PROJECTED (CTA	/E LEVELS:								
OCTAVE	31.5		125	250	500	10	00 2	K	4ĸ	8000
16K										
LINEAR	59	54	52	53	22	1	4	0	0	0
0										
A-wt	20	28	36	44	19	1.	4	1.	1	-2
-7										
									_	

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 12 - Prop-2 -

CONTRIBUTOR SPL DBA ATTENUATION FROM REF. DIS	STANCE
DB(Lin) DBA SPHERE PATH /1000 Ft BARRIE	ERS ATMOS.
SOURCE # 1 55 30 63 0 0 0	1
SOURCE # 2 55 30 62 0 0 0	1
SOURCE # 3 55 30 62 0 0 0	1
SOURCE # 4 47 20 58 0 0 0	0
SOURCE # 5 47 20 58 0 0 0	0
SOURCE # 6 47 20 58 0 0 0	0
SOURCE # 7 47 20 58 0 0 0	0
SOURCE # 8 47 20 58 0 0 0	0
SOURCE # 9 47 20 58 0 0 0	0
SOURCE # 10 35 19 63 0 0 0	2
SOURCE # 11 35 19 63 0 0 0	2
SOURCE # 12 34 19 63 0 0 0	2
SOURCE # 13 34 19 63 0 0 0	2
SOURCE # 14 34 19 63 0 0 0	2
SOURCE # 15 34 19 63 0 0 0	2
SOURCE # 16 48 34 72 0 0 0	4
SOURCE # 17 40 20 62 0 0 0	1
SOURCE # 18 40 20 62 0 0 0	1
SOURCE # 19 40 20 62 0 0 0	1
SOURCE # 20 40 20 62 0 0 0	1
SOURCE # 21 40 20 62 0 0 0	1
SOURCE # 22 40 20 62 0 0 0	1
SOURCE # 23 54 42 67 0 0 0	2
SOURCE # 24 45 22 60 0 0 0	1

Page 23

			X	Υ	Z	DST
RECEIVER #	12	Prop-2	80923	46071	530	
SOURCE #	1	Primary Crusher	79767	41378	548	4833
SOURCE #	2	SAG Mill	80714	41311	556	4763
SOURCE #	3	Ball Mill	80812	41287	556	4784
SOURCE #	4	Regrind Mill 1	80996	41228	559	4843
SOURCE #	5	Regrind Mill 2	81013	41223	559	4848
SOURCE #	5 6	Regrind Mill 3	81031	41219	559	4853
SOURCE #	7	Regrind Mill 4	80991	41208	559	4863
SOURCE #	8	Regrind Mill 5	81008	41204	55 9	4867
SOURCE #	9	Regrind Mill 6	81026	41199	559	4873
SOURCE #	10	ROŠAHT 1	71900	35000	680	14283
	11	ROSAHT 2	71850	34950	680	14353
SOURCE #	12	ROSAHT 3	71800	34900	680	14423
SOURCE #	13	ROSADZ 1	71750	34850	680	14494
	14	ROSADZ 2	71700	34800	680	14564
	15	ROSADZ 3	71650	34750	680	14634
	16	ROSA BUA	71910	35010	675	14268
	17	JPHT 1	78200	39000	680	7578
	18	ЈРНТ 2	78150	38950	680	7643
	19	ЈРНТ 3	78100	38900	680	7708
SOURCE #	20	JPDZ 1	78050	38850	680	7773
SOURCE #	21	JPDZ 2	78000	38800	680	7837
	22	JPDZ3	78210	39010	680	7565
	23	JPBU	78210	39010	680	7565
SOURCE #	24	HOSAHT 1	77400	43400	720	4425

Page 24

			STS&	PropResu	lts-L-P	eak.	TXT			
SOURCE #		HOSAHT 2			77	350	43350		720	4495
SOURCE #	26	HOSAHT 3				300	43300		720	4565
SOURCE #		HOSADZ 1				250	43250		720	4635
	28	HOSADZ 2				200	43200		720	4705
		HOSADZ 3				150	43150		720	4775 4411
	30 31	HOSABU				410 600	43410 43700		720	2395
	32	JOSAHT 1 JOSAHT 2				550	43650	2	630 630	2393
	33	JOSAHT 3				500	43600		530 530	2508
SOURCE #		JOSANI 3				450	43550		530	2566
		JOSADZ 2				400	43500		530	2625
SOURCE #		JOSADZ 3				350	43450	ì	530	2684
SOURCE #		JOSABU				610	43710	ì	530	2383
SOURCE #		CPDRILL 1				500	33700		460	13507
SOURCE #		CPDRILL 2				450	33650		160	13573
SOURCE # 4		CPDRILL 3				400	33600		160	13639
SOURCE # 4		SPDRILL 1				000	34800		480	13227
SOURCE # 4		SPDRILL 2				950	34750		480	13296
SOURCE # 4	43	SPDRILL 3			73	900	34700	4	480	13365
SOURCE # 4		SKPDRILL				600	42100		420	6641
SOURCE # 4		SKPDRILL				550	42050		420	6711
SOURCE # 4		SKPDRILL				500	42000		120	6781
SOURCE # 4		LPDRILL 1				900	39600		140	7620
SOURCE # 4		LPDRILL 2				850	39550		440	7689
SOURCE # 4		LPDRILL 3				800	39500		440	7757
SOURCE # !		TSFHT				300	37500		520	9624
SOURCE # !) T	TSFDZ			85	250	37450	,	520	9646
PROJECTED O										
OCTAVE 3	31.5	63	125	250	500	100	00 2	K	4K	8000
LINEAR	65	60	60	63	33	29	9	0	0	0
0										
A_wt	26	33	44	54	30	29	9	1	1	-2
-7										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 13 - Prop-3 -

CONTRIBUTOR		SPL	DBA	ATTENU.		REF. DISTAN	CE
	DB(L	in) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	51	26	66	0	0	0	1
SOURCE # 2	50	25	67	0	0	0	1
SOURCE # 3	50	25	67	0	0	0	1
SOURCE # 4	42	19	59	0	0	0	0
SOURCE # 5	42	19	59	0	0	0	0
SOURCE # 6	42	19	59	0	0	0	0
SOURCE # 7	42	19	59	0	0	0	0
SOURCE # 8	42	19	59	0	0	0	0
SOURCE # 9	42	19	59	0	0	0	0
SOURCE # 10	44	22	60	0	0	0	1
SOURCE # 11	44	21	60	0	0	0	1
SOURCE # 12	43	21	60	0	0	0	1
SOURCE # 13	43	21	60	0	0	0	1
SOURCE # 14	43	21	60	0	0	0	1
SOURCE # 15	43	21	60	0	0	0	1
SOURCE # 16	58	46	63	0	0	0	1
SOURCE # 17	42	21	61	0	0	0	1
SOURCE # 18	42	21	61	0	0	0	1
SOURCE # 19	42	21	61	0	0	0	1
SOURCE # 20	43	21	61	0	0	0	1
SOURCE # 21	43	21	61	0	0	0	1

SOURCE # 23 SOURCE # 24 SOURCE # 25 SOURCE # 26 SOURCE # 27 SOURCE # 29 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38 SOURCE # 37 SOURCE # 38 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 45 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	ST 42 21 57 44 42 21 42 21 43 21 43 21 43 21 43 21 43 21 43 21 44 20 39 20 40 27 46 27 48 29 52 32 53 31 50	S&PropResults 61 65 61 61 661 662 662 662 662 665 663 664 660 662 662 663 663	5-L-Peak.TX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T 000000000000000000000000000000000000	000000000000000000000000000000000000000	1111111111111200000000000022
TOTAL w bkg	66 51 C 58 F	RELATIVE HUM	IDITY 70	% REI	. DISTANCE	3

				Х	Υ	Z	DST
RECEIVER	#	13	Prop-3	72467	40006	525	
SOURCE	#	1	Primary Crusher	79767	41378	548	7427
SOURCE	#	2	SAG Mill	80714	41311	556	8350
SOURCE	#	3	Ball Mill	80812	41287	556	8443
SOURCE	#	4	Regrind Mill 1	80996	41228	559	8616
SOURCE	#	5	Regrind Mill 2	81013	41223	559	8632
SOURCE	#	ő	Regrind Mill 3	81031	41219	559	8649
SOURCE	#	7	Regrind Mill 4	80991	41208	559	8608
SOURCE	#	8	Regrind Mill 5	81008	41204	559	8624
SOURCE	#	9	Regrind Mill 6	81026	41199	559	8641
	#			71900	35000	680	5041
	**	10	ROSAHT 1				
SOURCE	#	11	ROSAHT 2	71850	34950	680	5095
SOURCE	#	12	ROSAHT 3	71800	34900	680	5151
SOURCE	#	13	ROSADZ 1	71750	34850	680	5207
SOURCE	#	14	ROSADZ 2	71700	34800	680	5264
SOURCE	#	15	ROSADZ 3	71650	34750	680	5321
SOURCE	#	$\overline{16}$	ROSA BUA	71910	35010	675	5029
SOURCE	#	1 7	JPHT 1	78200	39000	680	5822
SOURCE	#	18	JPHT 2	78150	38950	680	5782
SOURCE	#	19	JPHT 3	78100	38900	680	5742
SOURCE	#	20	JPDZ 1	78050	38850	680	5703
SOURCE	#	21	JPDZ 2	78000	38800	680	5665

Page 26

STS&PropResults-L-Peak.TXT SOURCE # 22 JPDZ3 SOURCE # 24 HOSAHT 1 77400 43400 720 5990 SOURCE # 25 HOSAHT 2 77350 43350 720 5981 SOURCE # 26 HOSAHT 3 77300 43300 720 5852 SOURCE # 27 HOSADZ 1 77250 43250 720 5782 SOURCE # 29 HOSADZ 2 77200 43200 720 5782 SOURCE # 29 HOSADZ 3 77150 43150 720 5643 SOURCE # 31 JOSAHT 1 80600 43700 630 8867 SOURCE # 31 JOSAHT 1 80600 43700 630 8867 SOURCE # 32 JOSAHT 2 80550 43650 630 8867 SOURCE # 33 JOSAHT 3 80500 43650 630 8867 SOURCE # 34 JOSADZ 1 80450 43550 630 8734 SOURCE # 35 JOSADZ 2 80400 43500 630 8869 SOURCE # 36 JOSADZ 3 80350 43450 630 8669 SOURCE # 37 JOSABU 80610 43710 630 8669 SOURCE # 38 CPDRILL 1 75500 33700 460 6997 SOURCE # 39 CPDRILL 2 75450 33650 460 7021 SOURCE # 39 CPDRILL 1 75500 33700 460 6997 SOURCE # 40 CPDRILL 3 75400 33600 460 7021 SOURCE # 41 SPDRILL 1 75600 34700 480 5427 SOURCE # 42 SPDRILL 1 75600 3700 480 5406 SOURCE # 43 SPDRILL 1 75600 42000 420 3631 SOURCE # 44 SKPDRILL 1 75600 42100 420 3769 SOURCE # 45 SKPDRILL 2 75550 42050 420 3709 SOURCE # 46 SKPDRILL 1 76900 39600 440 4452 SOURCE # 47 LPDRILL 1 76900 39500 440 4452 SOURCE # 48 LPDRILL 2 76850 39550 440 4407 SOURCE # 48 LPDRILL 1 76900 39500 440 4452 SOURCE # 49 LPDRILL 1 76800 39500 440 4452 SOURCE # 48 LPDRILL 2 76850 39550 440 4407 SOURCE # 49 LPDRILL 1 76900 39600 440 4452 SOURCE # 48 LPDRILL 2 76850 39550 440 4407 SOURCE # 49 LPDRILL 1 76800 39500 440 4452 SOURCE # 48 LPDRILL 2 76850 39550 440 4407 SOURCE # 49 LPDRILL 3 76800 39500 440 4452 SOURCE # 48 LPDRILL 2 76850 39550 440 4407 SOURCE # 50 TSFHT 85300 37500 620 13036				_		_					
SOURCE # 50 TSFHT 85300 37500 620 13075 85250 37450 620 13036 85250 8525	SOURCE #	23 24 25 25 26 27 28 29 30 31 32 33 33 45 35 40 41 42 43 44 45 46 47 48	JPBU HOSAHT 1 HOSAHT 2 HOSAHT 3 HOSADZ 1 HOSADZ 2 HOSADZ 3 HOSABU JOSAHT 1 JOSAHT 2 JOSAHT 3 JOSADZ 1 JOSADZ 2 JOSADZ 3 JOSADZ 1 JOSADZ 1 JOSADZ 1 JOSADZ 2 JOSADZ 1 JOSADZ 2 JOSADZ 3 JOSABU CPDRILL 1 CPDRILL 2 CPDRILL 2 CPDRILL 3 SPDRILL 1 SPDRILL 2 SPDRILL 3 SKPDRILL 1 SKPDRILL 3 SKPDRILL 1 SKPDRILL 2 LPDRILL 1 LPDRILL 1	1 2 3	PropRes		78210 78210 78210 77400 77350 77350 77250 77150 77150 80550 80550 80450 80450 80450 80450 75400 75400 775450 77500 775500 76900 76850	3901 3901 4340 4335 4330 4335 4315 4370 4360 4355 4370 3360 3470 4200 4200 3965	000000000000000000000000000000000000000	680 720 720 720 720 720 720 630 630 630 630 460 460 480 480 420 420 440 440	5830 5990 5991 5852 5783 5604 8933 8860 8734 8603 8769 8603 8946 7021 70427 54496 3760 3760 3760 3760 3760 3760 3760
.6K INEAR 62 60 59 58 29 22 0 0 0 -wt 22 34 42 50 25 22 1 1 -2	SOURCE # SOURCE # PROJECTED	50 51 OCTAV	TSFHT TSFDZ Æ LEVELS:				85300 85250	3750 3745	0 0	620 620	13075 13036
wt 22 34 42 50 25 22 1 1 -2	l.6κ										
		22	34	42	50	25	2	22	1	1	-2

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 14 - Prop-4 -

CONTRIBUTOR	DR	SPL (Lin) DBA	DBA SPHERE	ATTENU/ PATH	ATION FROM /1000 Ft	REF. DISTAN BARRIERS	CE ATMOS.
SOURCE # 1		23	70	0	0	0	2
SOURCE # 2	46	22	70	Ō	Ō	0	2
SOURCE # 3	46	22	70	0	0	0	2
SOURCE # 4	38	19	59	0	0	0	0
SOURCE # 5	38	19	59	0	0	0	0
SOURCE # 6	38	19	59	0	0	0	0
SOURCE # 7	' 38	19	59	0	0	0	0
SOURCE # 8		19	59	0	0	0	0
SOURCE # 9	38	19	59	0	0	0	0
SOURCE # 10	47	24	58	0	0	0	0
SOURCE # 11	. 47	24	58	0	0	0	0
SOURCE # 12	47	24	58	0	0	0	0
SOURCE # 13		24	58	0	0	0	Ō
SOURCE # 14	48	24	58	0	0	0	0
SOURCE # 15		24	58	0	0	Ō	0
SOURCE # 16		50	60	0	0	0	1
SOURCE # 17	٠,	20	62	Ō	Ō	0	2
SOURCE # 18	37	20	62	0	0	0	2

Page 27

SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 23 SOURCE # 24 SOURCE # 25 SOURCE # 26 SOURCE # 27 SOURCE # 29 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 32 SOURCE # 33 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 37 SOURCE # 38 SOURCE # 38 SOURCE # 38 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND TOTAL wo bkg TOTAL wo bkg	333333333333333333344444444444333 655 65777166666660444444444444333 657771666666666666666666666666666666666	20 20 20 20 20 20 20 20 20 20 20 20 20 2	62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	22223222232222224000001111133
TEMPERATURE 15	C 58	} F	RELATIVE	HUMIDITY	70 %	REF. DISTAN	CE 3

		X	Y	Z	DST
RECEIVER # 14	Prop-4	68569	34761	500	
SOURCE # 1	Primary Crusher	79767	41378	548	13007
SOURCE # 2	SAG Mill	80714	41311	556	13799
SOURCE # 3	Ball Mill	80812	41287	556	13874
SOURCE # 4	Regrind Mill 1	80996	41228	559	14009
SOURCE # 5	Regrind Mill 2	81013	41223	559	14021
SOURCE # 6	Regrind Mill 3	81031	41219	559	14036
SOURCE # 7	Regrind Mill 4	80991	41208	559	13995
SOURCE # 8	Regrind Mill 5	81008	41204	559	14008
SOURCE # 9	Regrind Mill 6	81026	41199	559	14022
SOURCE # 10	ROSAHT 1	71900	35000	680	3344
SOURCE # 11	ROSAHT 2	71850	34950	680	3291
SOURCE # 12	ROSAHT 3	71800	34900	680	3239
SOURCE # 13	ROSADZ 1	71750	34850	680	3187
SOURCE # 14	ROSADZ 2	71700	34800	680	3136
SOURCE # 15		71650			
	ROSADZ 3		34750	680	3086
SOURCE # 16	ROSA BUA	71910	35010	675	3354
SOURCE # 17	ЈРНТ 1	78200	39000	680	10524
SOURCE # 18	ЈРНТ 2	78150	38950	680	10458

SOURCE SO	######################################	JPHT 3 JPDZ 1 JPDZ 2 JPDZ3 JPBU HOSAHT 1 HOSAHT 3 HOSADZ 1 HOSADZ 2 HOSADZ 3 HOSADZ 1 JOSAHT 1 JOSAHT 2 JOSAHT 3 JOSADZ 1 JOSADZ 2 JOSADZ 3 JOSADZ 1 JOSADZ 2 JOSADZ 1 JOSADZ		PropResi	78 78 78 78 77 77 77 77 77 77 77 77 80 80 80 80 80 75 75 75 74 73 75 76 76	100 31 050 38 000 38 210 39 210 39 400 4 350 4 350 4 350 4 410 4 4600 4 4550 4 4700 31 4700 31 47	T 8900 8850 88600 9010 3400 33500 33150 33	680 680 680 680 720 720 720 720 720 630 630 630 630 460 480 420 420 440 440 440 620	10392 10326 10261 10537 10537 12355 12285 12214 12143 12073 12002 12370 14988 14918 14779 14709 14639 15002 7011 6970 6929 5431 5381 10163 10093 10093 10093 10093 10093 10093 10093 16896
OCTAVE 16K	31.5		125	250	500	1000	2κ	4K	8000
LINEAR O	61	57	57	59	29	24	0	0	0
A-wt -7	21	31	41	50	26	24	1	1	-2
0		050						_	

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 15 - Prop-5 -

CONTRIBUTOR	SPL				REF. DISTAN	CE
	DB(Lin) DI	BA SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	48 24	68	0	0	0	2
SOURCE # 2	47 23	69	0	0	0	2
SOURCE # 3	47 23	69	Ó	Ō	0	2
SOURCE # 4	40 19	59	0	Ò	Ō	0
SOURCE # 5	40 19	59	0	0	0	0
SOURCE # 6	40 19	59	0	0	0	0
SOURCE # 7	40 19	59	0	0	0	0
SOURCE # 8	40 19	59	0	0	0	0
SOURCE # 9	40 19	59	0	0	0	0
SOURCE # 10	53 28	53	0	0	0	0
SOURCE # 11	53 29	53	0	0	0	0
SOURCE # 12	53 29	53	0	0	0	0
SOURCE # 13	53 29	53	Ó	Ó	0	Ō
SOURCE # 14	53 29	53	0	0	0	Ó
SOURCE # 15	54 29	53	0	Ó	Ō	Ō

Page 29

SOURCE # 16 SOURCE # 17 SOURCE # 18 SOURCE # 19 SOURCE # 20 SOURCE # 22 SOURCE # 25 SOURCE # 25 SOURCE # 26 SOURCE # 27 SOURCE # 28 SOURCE # 29 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	644044044533333333333333455444446665550 71	57 56 20 20 20 20 20 20 20 20 20 20 20 20 20	S&PropRess 542 622 622 622 622 622 622 622 633 633 63	ults-L-Pea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0	
TOTAL w bkg TEMPERATURE 15	71	57 8 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	

RECEIVER # 1	5 Prop-5	X 72538	Y 33412	Z 475	DST
	1 Primary Crusher	79767	41378	548	10757
	2 SAG Mill	80714	41311	556	11369
	3 Ball Mill	80812	41287	556	11423
SOURCE #	4 Regrind Mill 1	80996	41228	559	11516
SOURCE #	5 Regrind Mill 2	81013	41223	559	11525
SOURCE #	6 Regrind Mill 3	81031	41219	559	11536
SOURCE #	7 Regrind Mill 4	80991	41208	559	11499
SOURCE #	8 Regrind Mill 5	81008	41204	55 9	11509
SOURCE #	9 Regrind Mill 6	81026	41199	55 9	11519
SOURCE # 1	0 ROŠAHT 1	71900	35000	680	1723
SOURCE # 1	1 ROSAHT 2	71850	34950	680	1697
SOURCE # 1.	2 ROSAHT 3	71800	34900	680	1673
SOURCE # 1	3 ROSADZ 1	71750	34850	680	1652
SOURCE # 1	4 ROSADZ 2	71700	34800	680	1634
SOURCE # 1	5 ROSADZ 3	71650	34750	680	1618

Page 30

SOURCE # 16 SOURCE # 17 SOURCE # 19 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 24 SOURCE # 25 SOURCE # 27 SOURCE # 27 SOURCE # 30 SOURCE # 31 SOURCE # 33 SOURCE # 33 SOURCE # 33 SOURCE # 33 SOURCE # 35 SOURCE # 37 SOURCE # 37 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 50 SOURCE # 50 SOURCE # 55	JPHT 1 JPHT 2 JPHT 3 JPDZ 1 JPDZ 2 JPDZ3 JPBU HOSAHT 1 HOSAHT 2 HOSAHT 3 HOSADZ 1 HOSADZ 2 HOSADZ 3 JOSAHT 1 JOSAHT 1 JOSAHT 2 JOSADZ 1 JOSADZ 2 JOSADZ 1 JOSADZ 2 JOSADZ 3 JOSABU CPDRILL 1 CPDRILL 2 SPDRILL 3 SPDRILL 3 SPDRILL 3 SKPDRILL 3	L	pResult	s-L-Pea 7191 7820 7815 7810 7805 7800 7821 7821 7740 7730 7720 7715 8060 8055 8040 8045 8040 7540 7395 7390 7560 7685 7680 8530 8525	0 350: 0 389: 0 389: 0 388: 0 388: 0 388: 0 388: 0 433: 434: 435: 43	00 500 500 100 500 500 500 500 500 500 5	675 680 680 680 680 680 6720 7720 7720 630 630 630 460 480 420 440 440 440 440 620	1728 7957 7887 7816 7745 7675 7971 11111 11044 10977 10910 10844 10777 11124 13071 13001 12931 12860 12790 12720 13085 2976 2921 2868 2015 1945 1947 19148 9084 7570 7501 7431 13401 13338
PROJECTED OCT. OCTAVE 31 16K		125	250	500	1000	2K	4K	8000
LINEAR 6	6 64	63	65	36	32	6	0	0
A-wt 2 -7	7 37	47	56	33	32	7	1	-2
0		ONICS SO RECEIV		C SOUND 6 - Pro		CTIONS	5	

CONTRIBUTOR	1	SPL	DBA	ATTENUA	TION FROM	REF. DISTANG	CE
	DB(I	Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	46	23	70	0	0	0	2
SOURCE # 2	46	22	70	0	0	0	2
SOURCE # 3	46	22	70	0	0	0	2
SOURCE # 4	38	19	59	0	0	0	0
SOURCE # 5	38	19	59	0	0	0	0
SOURCE # 6	38	19	59	0	0	0	0
SOURCE # 7	38	19	59	0	0	0	0
SOURCE # 8	38	19	59	0	0	0	0
SOURCE # 9	38	19	59	0	0	0	0
SOURCE # 10	41	21	61.	0	0	0	1
SOURCE # 11	41	21	61	0	0	0	1
SOURCE # 12	41	21	61	0	0	0	1

Page 31

		ST	S&PropResu	lts-L-Pea	k.TXT		
SOURCE # 13	41	21	61	0	0	0	1
SOURCE # 14	41	21	61	0	0	0	ī
SOURCE # 15	41	21	61	0	0	0	1
SOURCE # 16	55	43	66	0	0	0	2
SOURCE # 17	37	20	62	0	0	0	2
SOURCE # 18	37	20	6 2	0	0	0	2
SOURCE # 19	38	20	62	0	0	0	2
SOURCE # 20	38	20	62	0	0	0	2
SOURCE # 21	38	20	62	0	0	0	2
SOURCE # 22	38	20	62	0	0	0	2
SOURCE # 23	52	38	69	0	0	0	3
SOURCE # 24	35	19	63	0	0	0	2
SOURCE # 25	35	19	63	Ō	Ō	Õ	2
SOURCE # 26	35	19	63	Q	Ō	Ō	2
SOURCE # 27	35	19	63	Ō	Ō	Ō	2
SOURCE # 28	35	19	63	Ō	Ō	Ō	2
SOURCE # 29	35	19	<u>63</u>	0	0	0	2
SOURCE # 30	48	34	72	0	<u>o</u>	0	4
SOURCE # 31	34	19	63	0	0	0	2
SOURCE # 32	34	19	63	0	0	0	122222222222222222222222222222222222222
SOURCE # 33	34	19	63	0	0	0	2
SOURCE # 34	34	19	63	0	0	0	2
SOURCE # 35	34	19	63	0	0	0	2
SOURCE # 36	34	19	63	Ŏ	Õ	Õ	2
SOURCE # 37	47	33	73	0	0	0	
SOURCE # 38	50	31	62	0	0	0	0
SOURCE # 39	50	31	62	0	0	0	0
SOURCE # 40	50	31	62	0	0	0	0
SOURCE # 41	48	29	64	0	0	0	0
SOURCE # 42	48 48	29 29	64	0	0	0	0
SOURCE # 43 SOURCE # 44			64	0	0	0	0 1 1
SOURCE # 44 SOURCE # 45	41 41	23 23	69 69	0 0	0 0	0 0	<u> </u>
SOURCE # 45	41	23	69	0	0	0	<u>+</u>
SOURCE # 40	43	23 24	68	0	ő	Ö	1 1
SOURCE # 47	43	24	68	ŏ	ŏ	ŏ	1
SOURCE # 49	43	24	68	ŏ	ŏ	Ö	1 1 2 2
SOURCE # 50	36	19	63	ŏ	ŏ	ŏ	5
SOURCE # 51	36	19	63	ŏ	ŏ	Ŏ	5
BACKGROUND	0	ő	05	Ū	v	V	_
	v	v					
2							
TOTAL wo bkg	62	46					
TOTAL w bkg	62	46					
TEMPERATURE 15	C 5	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTAN	CE 3

			Х	Υ	Z	DST
RECEIVER #	16	Prop-6	75403	29145	500	
SOURCE #	1	Primary Crusher	79767	41378	548	12988
SOURCE #	2	SAG Mill	80714	41311	556	13275
SOURCE #	3	Ball Mill	80812	41287	556	13293
SOURCE #	4	Regrind Mill 1	80996	41228	559	13314
SOURCE #	5	Regrind Mill 2	81013	41223	559	13317
SOURCE #	6	Regrind Mill 3	81031	41219	559	13321
SOURCE #	7	Regrind Mill 4	80991	41208	559	13294
SOURCE #	8	Regrind Mill 5	81008	41204	559	13298
SOURCE #	9	Regrind Mill 6	81026	41199	559	13301
SOURCE #	10	ROŠAHT 1	71900	35000	680	6825
SOURCE #	11	ROSAHT 2	71850	34950	680	6808
SOURCE #	12	ROSAHT 3	71800	34900	680	6792

Page 32

SOURCE # 1 SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 5	4 ROSA 5 ROSA 6 ROSA 7 JPH 8 JPH 9 JPH 9 JPH 1 JPD 1 JPD 1 JPD 1 JPD 1 JPD 2 JPD 1 JPD 2 JPD 3 JPB 4 HOSA 6 HOSA 6 HOSA 7 LPD 6 SPD 6 SPD 7 SPD	T 2 T 3 T 3 Z 1 Z 2 Z 3 U T 1 AHT 2 AHT 3 ADZ 2 ADZ 3 AHT 1 ADZ 2 ADZ 3 AHT 2 AHT 2 AHT 3 ADZ 1 AHT 2 AHT 3 ADZ 1 AHT 1 ADZ 2 ADZ 3 AHT 1 ADZ 1 ANDZ 1 ANDZ 1 ANDZ 2 ANDZ 3 ANDZ 1		opResult	7175 7176 7176 7176 7182 7815 7815 7815 7821 7782 7782 7782 7772 7772 7772 7772	500 34 500 34 500 34 500 35 500 38 500 38 500 38 500 4 500 4 500 4 500 4 500 4 500 4 500 4 500 38 500 38 500 38 500 38 500 38 500 38 500 4 500 4 500 38 500 38 500 4 500 4 500 4 500 38 500 38 500 38 500 38 500 4 500 4 500 4 500 38 500 38 500 38 500 38 500 4 500 4 500 38 500 38	4850 4800 4750 5010 9000 88900 88900 88800 9010 93400 93400 93400 93410 93510 9	680 680 680 680 680 680 680 680 680 720 720 720 630 630 630 630 640 480 420 440 440 440 620 620	6776 67761 6747 6828 10245 10182 10061 9999 10258 14395 14283 14227 14115 14407 15455 15391 15327 14115 15464 4555 15391 15327 15136 4555 5790 15136 12956 12956 12956 12952 10561 10505 10448 12952 12882
PROJECTED OC	TAVE LE	EVELS:	125	250	500	1000	2K	4K	8000
16K	57	57	55	53	23	15	0	0	0
0	18	30	39	44	20	15	1	1	-2
-7 0	TO	70	33	77	۵0	Τ3	1	T	 ∠

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 17 - Prop-7 -

PROJECT - HGMWC

	SPL	DBA	ATTENU/	ATION FROM	REF. DISTAN	CE
DB(L	in) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
56	31	62	0	0	0	1
56	31	62	0	0	0	1
56	31	62	0	0	0	1
48	21	57	0	0	0	0
48	21	57	0	0	0	0
48	21	57	0	0	0	0
48	21	57	0	0	0	0
48	21	57	0	0	0	0
48	21	57	0	0	0	0
	56 56 56 48 48 48 48	DB(Lin) DBA 56 31 56 31 48 21 48 21 48 21 48 21 48 21 48 21	DB(Lin) DBA SPHERE 56 31 62 56 31 62 56 31 62 48 21 57 48 21 57 48 21 57 48 21 57 48 21 57	DB(Lin) DBA SPHERE PATH 56 31 62 0 56 31 62 0 56 31 62 0 48 21 57 0 48 21 57 0 48 21 57 0 48 21 57 0 48 21 57 0 48 21 57 0 48 21 57 0	DB(Lin) DBA SPHERE PATH /1000 Ft 56 31 62 0 0 56 31 62 0 0 0 56 31 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DB(Lin) DBA SPHERE PATH /1000 Ft BARRIERS 56 31 62 0 0 0 56 31 62 0 0 0 56 31 62 0 0 0 58 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0 48 21 57 0 0 0

SOURCE # 11 SOURCE # 12 SOURCE # 13 SOURCE # 14 SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 19 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 22 SOURCE # 23 SOURCE # 24 SOURCE # 25 SOURCE # 27 SOURCE # 28 SOURCE # 30 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38 SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 39 SOURCE # 41 SOURCE # 42 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 47 SOURCE # 48 SOURCE # 48 SOURCE # 48 SOURCE # 48 SOURCE # 49 SOURCE # 49 SOURCE # 51 BACKGROUND TOTAL wo bkg	STS 39 20 39 20 39 20 39 20 39 20 39 20 39 20 39 20 39 20 39 20 41 21 41 21 21 41 21 21 41	&PropResulf 62 66 66 66 66 66 66 66 66 66 66 66 66	ts-L-Peak. 000000000000000000000000000000000000	TXT 00000000000000000000000000000000000	000000000000000000000000000000000000000	111111200000000111111111111111200000000	
TEMPERATURE 15 C		RELATIVE H	JMIDITY 7	0 %	REF. D	ISTANCE 3	
	COORDI	NATE LOCAT	IONS (Ft)				
SOURCE # 3 Ba SOURCE # 4 Re SOURCE # 5 Re SOURCE # 6 Re SOURCE # 7 Re SOURCE # 8 Re	rimary Crushold Mill Old Mill	1 2 3 4 5	81013 81031 80991	41378 41311 41287 41228 41223	2 500 548 556 559 559 559 559 559	DST 4369 4276 4261 4225 4223 4222 4205 4203 4201	

Page 34

				_		_					
SOURCE # 11 SOURCE # 11 SOURCE # 11 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 22 SOURCE # 33 SOURCE # 33 SOURCE # 33 SOURCE # 44 SOURCE # 45 SOURCE # 55 SOURCE	RO R	SAHT 1 SAHT 2 SAHT 3 SADZ 2 SADZ 3 SA BUA HT 1 HT 2 HT 3 DZ 2 DZ 3 SAHT 1 DZ 2 DZ 3 SAHT 1 SADZ 2 SAHT 2 SAHT 3 SAHT 2 SAHT 3 SAHT 1 SAHT 3 SAHT 1 SAHT 3 SAHT 2 SAHT 3 SAHT 1 SAHT 3 SAHT 3 SAHT 1 SAHT 3 SAHT 3 SAHT 1 SAHT 3 SAHT 1 SAHT 3 SAHT 3 SAHT 1 SAHT 3 SAHT 3 SAHT 1 SAHT 3 SA		opResult	777777777777777777777777777777777777777	7400 77250 7	TXT 35000 34950 34950 34850 34850 35000 389500 389500 38850 39010 433500 433500 433500 433500 434500 435500		680 680 680 680 680 680 680 680 680 680	8711 8771 8838 89515 98913 2922 2937 6969 6965 6665 6676 6675 6675 6675 667	
PROJECTED OC OCTAVE 3 16K	TAVE 1.5	LEVELS: 63	125	250	500	10	00 2	K	4K	8000	
	65	61	59	61	32	2	7	0	0	0	
4-wt -7	25	34	43	52	29	2	7	1	1	-2	
				OUND-CAL				IONS	5		

AT RECEIVER # 18 - Prop-8 -

CONTRIBUTOR	٦		SPL	DBA	ATTENUA		REF. DISTAN	CE
		DB(L	.in) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE #	1	46	22	70	0	0	0	2
SOURCE #	2	46	23	70	0	0	0	2
SOURCE #	3	46	23	70	0	0	0	2
SOURCE #	4	39	19	59	0	0	0	0
SOURCE #	5	39	19	59	0	0	0	0
SOURCE #	6	39	19	59	0	0	0	0

	STS&PropResults-L-Peak.TXT									
SOURCE # 7	39	19	59	0	0	0	0			
SOURCE # 8 SOURCE # 9	39 39	19 19	59 59	0 0	0 0	0 0	0			
SOURCE # 10	33	19	63	ŏ	ŏ	ŏ	2			
SOURCE # 11	33	19	63	0	Ō	0	2			
SOURCE # 12	33	19	63	0	o O	0	2			
SOURCE # 13 SOURCE # 14	33 33	19 19	63 63	0 0	0 0	0 0	2			
SOURCE # 15	33	19	63	ŏ	ŏ	0	3			
SOURCE # 16	47	32	73	0	0	0	4			
SOURCE # 17 SOURCE # 18	35 35	19 19	62 62	0 0	0 0	0 0	2			
SOURCE # 19	35	19	62	ŏ	ŏ	ŏ	2			
SOURCE # 20	35	19	62	0	0	0	2			
SOURCE # 21 SOURCE # 22	35 36	19 19	62 63	0 0	0 0	0 0	2			
SOURCE # 23	49	35	71	0	0	0	3			
SOURCE # 24	33	19	63	0	0	0	3			
SOURCE # 25 SOURCE # 26	33 33	19 19	63 63	0 0	0 0	0 0	2			
SOURCE # 27	33	19	63	0	0	0	2			
SOURCE # 28	33	19	63	0	0	0	2			
SOURCE # 29 SOURCE # 30	33 47	19 32	63 74	0 0	0	0 0	4			
SOURCE # 31	34	19	63	Ō	0	0	2			
SOURCE # 32	34	19	63 63	0	0	0	2			
SOURCE # 33 SOURCE # 34	34 34	19 19	63	0 0	0 0	0 0	2			
SOURCE # 35	34	19	63	0	0	0	0222234222222332222242222224			
SOURCE # 36	34	19	63	0	0	0	2			
SOURCE # 37 SOURCE # 38	48 41	33 23	73 69	0 0	0	0 0	1			
SOURCE # 39	41	23	69	0	0	0	1			
SOURCE # 40 SOURCE # 41	41 40	23 22	69 70	0	0 0	0 0	1 1 1 1 1 1			
SOURCE # 41	40	22	70	ŏ	ŏ	ŏ	1			
SOURCE # 43	40	22	70	Ō	0	0	1			
SOURCE # 44 SOURCE # 45	38 38	22 22	71 71	0	0 0	0 0	1			
SOURCE # 46	38	22	71	ŏ	ŏ	0	ī			
SOURCE # 47	40	23	70	0	0	0	1			
SOURCE # 48 SOURCE # 49	40 40	22 22	70 70	0 0	0	0 0	1 1			
SOURCE # 50	40	20	62	0	0	0	ī			
SOURCE # 51	40	20	62	0	0	0	1			
BACKGROUND	0	0								
_										
TOTAL wo bkg TOTAL w bkg	58 58	42 42								
_										
TEMPERATURE 1	.5 C 58	8 FR	ELATIVE	HUMIDITY	70 %	REF. DISTA	NCE 3			
		COORDIN	ATE LOCA	TIONS (Ft)					
				X		z DS	Т			
RECEIVER # 18	Prop-			87710		525 549 1361	7			
SOURCE # 1 SOURCE # 2	SAG M	ry Crushe ill	Ι.	79767 80714		548 1361 556 1303				
SOURCE # 3	Ball	ΠΓrν		80812	41287	556 1295	8			
SOURCE # 4 SOURCE # 5	Regri	nd Mill 1 nd Mill 2		80996 81013		559 1281 559 1279				
SOURCE # 5		nd Mill 2		81031		559 1278	5			
	_		_	26						

Page 36

						Dool				
SOURCE # # 11 SOURCE # # 12 SOURCE # # 12 SOURCE # # 12 SOURCE # # 12 SOURCE # # 22 SOURCE # # 22 SOURCE # # 22 SOURCE # # 3 SOURCE # # 4 SOURCE # 4 4	8 9 Reg	rind Mirind Mirind Mirind Mirind Mirind 1 AHTT 2 AHTT 2 ADZ 3 ATTT 2 AHTT 3 AHT	7 4	opResul ⁺		80991 81008 81026 71900 71850 71850 71750 71750 71910 78200 78150 788150 778050 77850 77400 77250 774150 774150 774150 77450	4110 4110 4110 4110 4110 4110 4110 4110	208 204 199 200 350 350 350 350 350 350 350 350 350 3	5555680 6680 6680 6680 6680 6680 6680 66	12784 12770 16489 16523 165572 166661 16488 1287
SOURCE # 4 SOURCE # 4 SOURCE # 5 SOURCE # 5	8 LPD 9 LPD 0 TSF	RILL 2 RILL 3 HT				76850 76800 85300 85250	395 395 375	550 500 500	440 440	14254 14260 7577 7545
PROJECTED OCTOCTAVE 3:16K			.25	250	500	1	.000	2κ	4K	8000
LINEAR	55	51	49	48	15		3	0	0	0
	16	25	33	39	12		3	1	1	-2
-7		GEOSON	ICS SO	OUND-CAL	LC S	OUND	PROJI	ECTION:	5	

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 19 - Prop-9 -

CONTRIBUTOR	1	SPL	DBA	ATTENUA	TION FROM	REF. DISTAN	CE
	DB ((Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	46	23	70	0	0	0	2
SOURCE # 2	47	23	69	0	0	0	2
SOURCE # 3	47	23	69	0	0	0	2

	STS&PropResults-L-Peak.TXT									
SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 8 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 15 SOURCE # 15 SOURCE # 17 SOURCE # 17 SOURCE # 19 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 27 SOURCE # 27 SOURCE # 28 SOURCE # 29 SOURCE # 30 SOURCE # 30 SOURCE # 37 SOURCE # 33 SOURCE # 33 SOURCE # 37 SOURCE # 37 SOURCE # 38 SOURCE # 37 SOURCE # 37 SOURCE # 38 SOURCE # 44 SOURCE # 45 SOURCE # 47 SOURCE # 47 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 49 SOURCE # 47 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 40	33333333333343333344444444447555555580999998888000220 88	19999999999999999999999999999999999999	599 599 599 599 599 599 599 633 633 633 633 633 633 633 633 633 6			000000000000000000000000000000000000000	000003333335222222222222222222222241111111111			
TEMPERATURE 1			RELATIVE H	HMTOTTY :	70 %	REF. DIS	STANCE 3			
	- 5 00		INATE LOCAT	IONS (Ft))					
RECEIVER # 19 SOURCE # 1 SOURCE # 2 SOURCE # 3		11	her	X 90181 79767 80714 80812	33532 41378	525 548 13 556 12	DST 3038 2253 2162			

```
STS&PropResults-L-Peak.TXT

SOURCE # 4 Regrind Mill 1 80996 412

SOURCE # 5 Regrind Mill 2 81013 412

SOURCE # 6 Regrind Mill 3 81031 412

SOURCE # 7 Regrind Mill 4 80991 4120

SOURCE # 8 Regrind Mill 5 81008 4120

SOURCE # 9 Regrind Mill 6 81026 4110

SOURCE # 10 ROSAHT 1 71900 3500

SOURCE # 11 ROSAHT 2 71850 3490

SOURCE # 12 ROSAHT 3 71800 3490

SOURCE # 13 ROSADZ 1 71750 3480

SOURCE # 14 ROSADZ 2 71700 3480

SOURCE # 15 ROSADZ 3 71650 3475

SOURCE # 16 ROSA BUA
                                                                                                     559
                                                                        80996 41228
                                                                                                               11983
                                                                                     41223
                                                                                                     559
                                                                                                               11966
                                                                                    41219
                                                                                                     559
                                                                                                               11950
                        rind Mill SAHT 1
JSAHT 2
OSAHT 3
OSADZ 1
ROSADZ 2
ROSADZ 3
ROSA BUA
JPHT 1
PHT 2
                                                                                     41208
                                                                                                     559
                                                                                                               11974
                                                                                                     559
559
                                                                                     41204
                                                                                                               11958
                                                                                     41199
                                                                                                               11941
                                                                                     35000
                                                                                                     680
                                                                                                               18340
                                                                                     34950
                                                                                                     680
                                                                                                               18386
                                                                                     34900
                                                                                                     680
                                                                                                               18432
                                                                                     34850
                                                                                                     680
                                                                                                               18478
                                                                                     34800
                                                                                                     680
                                                                                                               18525
                                                                                                     680
                                                                                     34750
                                                                                                               18571
                                                                                                    675
680
                                                                                     35010
                         ROSA BUA
JPHT 1
JPHT 2
JPHT 3
JPDZ 1
JPDZ 2
JPDZ3
JPBU
HOSAHT 1
HOSAHT 2
HOSAHT 3
HOSADZ 1
HOSADZ 2
HOSADZ 3
HOSABU
JOSAHT 1
                                                                                                               18331
   SOURCE # 16
SOURCE # 17
SOURCE # 19
SOURCE # 20
SOURCE # 21
SOURCE # 22
                                                                        78200
                                                                                     39000
                                                                                                               13170
                                                                                                     680
                                                                         78150
                                                                                     38950
                                                                                                               13195
                                                                         78100
                                                                                     38900
                                                                                                     680
                                                                                                               13220
                                                                                     38850
                                                                         78050
                                                                                                     680
                                                                                                               13246
                                                                         78000
                                                                                     38800
                                                                                                     680
                                                                                                               13272
   SOURCE # 22
SOURCE # 23
SOURCE # 24
SOURCE # 25
SOURCE # 26
SOURCE # 27
SOURCE # 28
SOURCE # 30
SOURCE # 31
SOURCE # 32
SOURCE # 32
                                                                         78210
                                                                                     39010
                                                                                                     680
                                                                                                               13165
                                                                         78210
                                                                                     39010
                                                                                                     680
                                                                                                               13165
                                                                         77400
                                                                                    43400
                                                                                                    720
720
                                                                                                               16148
                                                                        77350
                                                                                    43350
                                                                                                               16157
                                                                         77300
                                                                                                     720
                                                                                    43300
                                                                                                               16167
                                                                        77250
                                                                                    43250
                                                                                                     720
                                                                                                               16176
                                                                         77200
                                                                                    43200
                                                                                                     720
                                                                                                               16186
                                                                        77150
77410
                                                                                                     720
                                                                                    43150
                                                                                                               16197
                         HOSABU
JOSAHT 1
JOSAHT 2
JOSAHT 3
                                                                                                     720
                                                                                    43410
                                                                                                               16146
                                                                        80600
                                                                                    43700
                                                                                                     630
                                                                                                               13971
                                                                                                     630
                                                                        80550
                                                                                    43650
                                                                                                               13969
   SOURCE # 33
                                                                        80500
                                                                                                     630
   SOURCE # 33
SOURCE # 34
SOURCE # 35
SOURCE # 36
SOURCE # 37
SOURCE # 38
SOURCE # 40
SOURCE # 41
SOURCE # 42
                                                                                    43600
                                                                                                               13967
                        JOSADZ 1
JOSADZ 2
JOSADZ 3
JOSABU
CPDRILL 1
CPDRILL 2
CPDRILL 3
SPDRILL 1
SPDRILL 2
                         JOSADZ 1
JOSADZ 2
JOSADZ 3
                                                                        80450
                                                                                    43550
                                                                                                     630
                                                                                                               13966
                                                                        80400
                                                                                    43500
                                                                                                     630
                                                                                                               13965
                                                                        80350
                                                                                    43450
                                                                                                    630
                                                                                                               13965
                                                                        80610
                                                                                    43710
                                                                                                    630
                                                                                                               13971
                                                                        75500
75450
75400
                                                                                     33700
                                                                                                     460
                                                                                                               14682
                                                                                     33650
33600
                                                                                                               14731
14781
                                                                                                     460
                                                                                                     460
                                                                        74000
                                                                                     34800
                                                                                                     480
                                                                                                               16230
                                                                        73950
                                                                                     34750
                                                                                                     480
                                                                                                               16276
   SOURCE # 43
SOURCE # 44
                         SPDRILL 3
                                                                        73900
                                                                                     34700
                                                                                                     480
                                                                                                               16322
                                                                                    42100
                                                                        75600
                                                                                                     420
                                                                                                               16912
                         SKPDRILL 1
   SOURCE # 45
SOURCE # 46
SOURCE # 47
SOURCE # 48
                                                                                    42050
                                                                                                     420
                         SKPDRILL 2
                                                                        75550
                                                                                                               16930
                         SKPDRILL 3
                                                                        75500
                                                                                     42000
                                                                                                     420
                                                                                                               16948
                                                                        76900
                         LPDRILL 1
                                                                                     39600
                                                                                                     440
                                                                                                               14601
                         LPDRILL 2
LPDRILL 3
                                                                        76850
                                                                                     39550
                                                                                                     440
                                                                                                               14626
   SOURCE # 49 LPDRI
SOURCE # 50 TSFHT
SOURCE # 51 TSFDZ
                                                                                     39500
                                                                                                     440
                                                                        76800
                                                                                                               14651
                                                                                                     620
                         TSFHT
                                                                         85300
                                                                                     37500
                                                                                                                 6291
                                                                        85250
                                                                                     37450
                                                                                                     620
                                                                                                                 6298
PROJECTED OCTAVE LEVELS:
                                         125
OCTAVE 31.5 63
                                                                    500 1000
                                                       250
                                                                                            2K 4K
                                                                                                                    8000
16ĸ
LINEAR 55 51 49 48
                                                                     16 3 0 0
                                                                                                                     0
0
        16 25
                                                         39
                                                                     12 3
                                             33
                                                                                               1 1 -2
A-wt
```

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 20 - Prop-10 -

PROJECT - HGMWC

CONTRIBUTOR | SPL | DBA ATTENUATION FROM REF. DISTANCE | DB(Lin) DBA SPHERE PATH /1000 Ft BARRIERS ATMOS.

STS&PropResults-L-Peak.TXT									
SOURCE # 3 3 4 5 6 7 8 9 10 11 2 3 SOURCE # 4 5 5 SOURCE # 4 5 SOURCE # 4 5 SOURCE # 4 1 1 2 2 3 SOURCE # 1 1 3 SOURCE # 1 1 2 3 SOURCE # 1 2 2 3 SOURCE # 2 2 5 SOURCE # 2 2 5 SOURCE # 3 3 3 3 3 4 5 SOURCE # 3 3 3 3 4 5 SOURCE # 3 3 SOURCE # 4 4 3 SOURCE # 4 4 5 SOURCE # 4 4 5 SOURCE # 5 S	46669999944444444444444444444444444444	ST 29 31 31 21 21 21 21 21 21 21 21 21 21 21 21 21	S&Profits 13	ts-L-Peak 000000000000000000000000000000000000	C.TXT 00000000000000000000000000000000000	000000000000000000000000000000000000000	110000000222224111111121111121111111111		
SOURCE # 49 SOURCE # 50	45 45	26 22	67 60	0 0	0 0	0	0 0		
TEMPERATURE 15	С	58 F	RELATIVE H	UMIDITY	70 %	REF. DISTAN	CE 3		

X Y Z DST RECEIVER # 20 Prop-10 84972 41819 550

			STS	&PropResu	lts-L-P	eak.TX	T		
SOURCE # SOURCE #	<u>1</u> 2	Primary (SAG Mill	rush	&PropResu er 1 2 3 4 5 6	797 807	'67 4 '14 4	1378 1311	548 556	5223 4287
SOURCE # SOURCE #	3	Ball Mill	1477	7	808	312 4 996 4	1287 1228	556 559	4193 4019
SOURCE #	4 5 6 7	Regrind M		2	810	13 4	1223	559	4003
SOURCE # SOURCE #	6	Regrind M	1]] 1]]	3 <i>1</i>	810 809)31 4 191 <i>4</i>	1219 1208	559 559	3986 4027
SOURCE #	8	Regrind M	iiii	5	810	08 4	1204	559	4011
SOURCE # :	9 10	Regrind M	1111	6	810 710)26 4)00 3	1199 5000	559 680	3994 14744
SOURCE # 3	11	ROSAHT 2			718	350 3	4950	680	14811
SOURCE # 1 SOURCE # 1	12 13	ROSAHT 3			718 717	300 3 750 3	4900 4850	680 680	14879 14946
SOURCE # 3	14	ROSADZ 2			717	700 3	4800	680	15014
SOURCE # 1 SOURCE # 1	15 16	ROSADZ 3 ROSA RUA			716 719	550 3 910 3	4750 5010	680 675	15081 14730
SOURCE # 3	17	JPHT 1			782	200 3	9000	680	7336
SOURCE # 1 SOURCE # 1	18 19	JPHT 2 JPHT 3			78] 781	L50 3 L00 3	8950 8900	680 680	7401 7467
SOURCE # 2	20	JPDZ 1			780)50 3	8850	680	7533
SOURCE # 2 SOURCE # 2	21 22	JPDZ 2 JPDZ3			780 782	000 3 210 3	8800 9010	680 680	7598 7323
SOURCE # 2	23	JPBU			782	210 3	9010	680	7323
SOURCE # 2 SOURCE # 2		HOSAHT 1			772	100 4 350 4	3400 3350	720 720	7737 7776
SOURCE # 2	26	HOSAHT 3			773	300 4	3300	720 720	7815 7855
SOURCE # 2	27 28	HOSADZ 1				250 4 200 4	3250 3200	720	7895
SOURCE # 3	29	HOSADZ 3			773	L50 4	3150	720 720	7936 7729
SOURCE # :		HOSABU JOSAHT 1			806	500 4	3410 3700	630	4760
SOURCE # 3		JOSAHT 2 JOSAHT 3				550 4 500 4	3650 3600	630 630	4786 4814
SOURCE # 3	34	JOSADZ 1			804	150 4	3550	630	4842
SOURCE # 3	35 36	JOSADZ 2 JOSADZ 3				100 4 350 4	3500 3450	630 630	4871 4902
SOURCE # 3	37	JOSABU			806	510 4	3710	630	4754
SOURCE # 3	38 30	CPDRILL 1 CPDRILL 2					3700 3650	460 460	12475 12546
SOURCE # 4	40	CPDRILL 3	;		754	100 3	3600	460	12616
SOURCE # 4 SOURCE # 4	41 42	SPDRILL 1 SPDRILL 2	;		74(730	000 3 950 3	4800 4750	480 480	13025 13094
SOURCE # 4	43	SPDRILL 3	;		739	9 00 3	4700	480	13163
SOURCE # 4 SOURCE # 4	44 45	SKPDRILL SKPDRILL			750 751	500 4 550 4	2100 2050	420 420	9377 9425
SOURCE # 4	46	SKPDRILL	3		75!	500 4	2000	420	9474
SOURCE # 4 SOURCE # 4		LPDRILL 1 LPDRILL 2				900 3 350 3	19600 19550	440 440	8372 8433
SOURCE # 4	49	LPDRILL 3			768	300 3	9500	440	8495
SOURCE # 5 SOURCE # 5		TSFHT TSFDZ					37500 37450	620 620	4332 4378
PROJECTED OCO	CTAV	E LEVELS:	125	250	500	1000) 2K	4K	8000
16K LINEAR	63	58	55		28	21	, 2K 0	4 0	
0 A-wt	24	32	39		25	21	1	1	
-7 -0	6~ `T	J &	,,,	70	<i>- J</i>	~ ±	. J.	•••	<u>.</u>
_									

APPENDIX H

Soundcalc Output -Ore Processing Equipment

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 1 - STS-HBC -

SOURCE # 1 SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 6 SOURCE # 7 SOURCE # 8 SOURCE # 9 BACKGROUND	SPL DB(Lin) DBA 51 26 51 26 51 26 43 20 43 19 43 20 43 20 43 20 43 20 6 86		ATTENUAT PATH 0 0 0 0 0 0 0 0	/1000 Ft	REF. DISTANC BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0	E ATMOS. 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL wo bkg TOTAL w bkg	57 32 57 86					
TEMPERATURE 15	C 58 F	RELATIVE HUM	IDITY ?	70 %	REF. DISTAN	CE 3

COORDINATE LOCATIONS (Ft)

RECEIVER # SOURCE #	1 2 3 4 5 6 7 8	STS-HBC Primary SAG Mil Ball Mi Regrind Regrind Regrind Regrind Regrind	 Mill 1 Mill 2 Mill 3 Mill 4 Mill 5		797 807 808 809 810 810 809 810	767 41 714 41 812 41 996 41 013 41 031 41 991 41	Y 837 378 311 287 228 223 219 208 204 199	Z 527 548 556 559 559 559 559 559	DST 7067 7559 7630 7776 7789 7802 7790 7803 7816
OCTAVE	OCTA 31.		5: 125	250	500	1000	2κ	4K	8000
16K LINEAR O	56	51	37	35	17	0	0	0	0
A-wt -7	16	25	21	27	14	0	1	1	-2

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 2 - STS-KIP -

PROJECT - HGMWCMP

PROJECT - HGMWCMP

CONTRIBUTO	R		SPL	DBA	ATTENUA	ATION FROM	REF. DISTANO	CE
		DB (1	Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE #	1	54	29	63	0	0	0	1
SOURCE #	2	54	29	63	0	0	0	1
SOURCE #	3	54	29	63	0	0	0	1
SOURCE #	4	46	20	58	0	0	0	0
SOURCE #	5	46	20	57	0	0	0	0
SOURCE #	6	46	20	58	0	0	0	0
SOURCE #	7	46	20	58	0	0	0	0

			HGMW	CMP.TXT			
SOURCE # 8	46	20	58	0	0	0	0
SOURCE # 9	46	20	58	0	0	0	0
BACKGROUND	77	89					
TOTAL wo bkg	60	34					
TOTAL w bkg	77	89					
TEMPERATURE 15	c	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	3

						Х	Υ	Z	DST
RECEIVER A	# 2	STS-KIP			794	441 363	L21	570	
SOURCE #	# 1	Primary	Crusher			767 413	378	548	5267
SOURCE i	# 2	SAG Milī	1		80	714 413	311	556	5344
SOURCE i	# 3	Ball Mi	17		808	812 412	287	556	5345
SOURCE i	# 4	Regrind	Mill 1		809	996 412	228	559	5338
SOURCE #	# 5	Regrind	Mill 2		810	013 417	223	559	5338
SOURCE #	# 6	Regrind	Mill 3		810	031 412	219	559	5340
SOURCE #	# 7	Regrind	Mill 4		809	991 41:	208	559	5317
SOURCE #	# 8	Regrind	Mill 5		810	008 412	204	559	5319
SOURCE #	#9	Regrind	Mill 6		810	026 413	L99	559	5319
		_							
PROJECTED	OCTA'								
OCTAVE	31.	5 63	125	250	500	1000	2ĸ	4K	8000
16K									
LINEAR	59	54	40	39	22	1	0	0	0
0									
A_wt	19	28	24	30	18	1	1	1	-2
-7									
Ð									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 3 - STS-Loc1 -

PROJECT - HGMWCMP

CONTRIBUTOR	DR (I	SPL Lin) DBA	DBA SPHERE	ATTENUA PATH	ATION FROM /1000 Ft	REF. DISTANCE BARRIERS	E [
SOURCE # 1	49	24	68	0	0	0	2
SOURCE # 2	48	23	68	Ŏ	ŏ	ň	2
SOURCE # 3	48	23	68	Ŏ	ŏ	Ŏ	- 2
SOURCE # 4	40	<u>1</u> 9	59	Ŏ	Ŏ	Ŏ	ō
SOURCE # 5	40	$\bar{19}$	58	Ŏ	Ō	Ō	Ō
SOURCE # 6	40	19	59	Ō	Ö	Ŏ	Ŏ
SOURCE # 7	40	19	59	Ō	Ó	0	Ó
SOURCE # 8	40	19	59	0	Ó	0	0
SOURCE # 9	40	19	59	Ō	0	0	Ó
BACKGROUND	0	69					
TOTAL wo bkg	54	31					
TOTAL w bkg	54	69					
TEMPERATURE 15	C 5	58 F	RELATIVE HUN	4IDITY	70 %	REF. DISTAN	ICE 3

COORDINATE LOCATIONS (Ft)

X Y Z DST RECEIVER # 3 STS-Loc1 73466 33832 475

HGMWCMP.TXT Primary_Crusher SOURCE # 556 559 SAG Mill Ball Mill SOURCE # SOURCE # SOURCE # Regrind Mill 1 SOURCE # Regrind Mill 2 SOURCE # Regrind Mill 3 SOURCE # Regrind Mill 4 SOURCE # Regrind Mill 5 SOURCE # 9 Regrind Mill 6 PROJECTED OCTAVE LEVELS: 31.5 OCTAVE 2ĸ 4ĸ 16K LINEAR A-wt -2 -7

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 4 - STS-Loc3 -

PROJECT - HGMWCMP

CONTRIBUTOR SOURCE # 1 SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 8		SPL in) DBA 27 26 26 20 19 20 20 20	DBA SPHERE 65 66 66 59 58 59 59	ATTENUA PATH 0 0 0 0 0 0	TION FROM /1000 Ft 0 0 0 0 0 0 0	REF. DISTANC BARRIERS 0 0 0 0 0 0	ATMOS. 1 1 0 0 0 0
SOURCE # 9 BACKGROUND TOTAL wo bkg	43 0 57 57	20 63 32 63	59	0	0	0	0
TOTAL w bkg TEMPERATURE 15		_	RELATIVE HU	MIDITY	70 %	REF. DISTAN	ICE 3

COORDINATE LOCATIONS (Ft)

						X	Υ	Z	DST
RECEIVER #	ŧ 4	STS-Loc3			73		149	525	
SOURCE #	<i>t</i> 1	Primary	Crusher		79	767 41	378	548	6759
SOURCE #	ŧ 2	SAG Mill			80	714 41	311	556	7641
SOURCE #	t 3	Ball Mil	T		80	812 41	287	556	7728
SOURCE #	t 4	Regrind	Mill 1		80	996 41	228	559	7888
SOURCE #	£ 5	Regrind			81	013 41	223	559	7904
SOURCE #	ŧ 6	Regrind	Mill 3		81	031 41	219	559	7920
SOURCE #	ŧ 7	Reğrind			80	991 41	208	559	7878
SOURCE #	8	Regrind	мill 5		81	008 41	204	559	7894
SOURCE #	. 9	Regrind	Mill 6		81	026 41	199	559	7910
		_							
PROJECTED	OCTA'	VE LEVELS	:						
OCTAVE	31.	5 63	125	250	500	1000	2K	4K	8000
16K									
LINEAR	56	51	37	35	17	0	0	0	0
0									
A-wt	16	25	21	27	14	0	1	1	-2
									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 5 - STS-HouseSO/GMH -

PROJECT - HGMWCMP

SOURCE #	1 2 3 4 5 6 7 8	SPL DB(Lin) 56 57 57 50 50 50 50 50		DB SPHERE 62 61 60 57 56 57 57 57	A ATTENU PATH 0 0 0 0 0 0 0	JATION /100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Ft	REF. DI: BARRI 0 0 0 0 0 0 0 0	ERS ATI ((MOS. 1
TOTAL WO I	okg okg	63 63	37 63							
TEMPERATURE	15	C 58 F	RE	LATIVE H	UMIDITY	70 %		REF. D	ISTANCE	3
		c	OORDINA	TE LOCAT	IONS (I	Ft)				
RECEIVER # SOURCE #	1 2 3 4 5 6 7 8	STS-Hous Primary SAG Mill Ball Mil Regrind Regrind Regrind Regrind Regrind	Crusher Mill 1		827: 7976 807: 808: 809: 810: 810: 810: 810:	67 413 14 413 12 412 96 412 13 412 31 412 91 412 08 412	78 11 87 28 23 19 08 04	Z 560 548 556 556 559 559 559 559 559	DST 4419 3786 3713 3568 3556 3543 3553 3542 3528	
PROJECTED O	31.5		: 125	250	500	1000	2ĸ	4K	8000	
16K Linear O	62	57	43	42	25	4	0	0	0	
A-wt -7	22	30	27	33	22	4	1	1	-2	

GEOSONICS SOUND-CALC SOUND PROJECTIONS $_{\searrow}$ AT RECEIVER # 6 - STS-HouseSOR -

PROJECT - HGMWCMP

CONTRIBUTOR	1		SPL	DBA	ATTENUA		REF. DISTAN	CE
		DB(L	.in) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE #	1	59	34	58	0	0	0	0
SOURCE #	2	62	36	56	0	0	0	0
SOURCE #	3	62	37	56	0	0	0	0
SOURCE #	4	55	24	54	0	0	0	0
SOURCE #	5	55	24	54	0	0	0	0

		HGMWCMP.TXT			
SOURCE # 6	55 24	54 0	0	0	0
SOURCE # 7	55 24	54 0	0	0	0
SOURCE # 8	55 24	54 0	0	0	0
SOURCE # 9	55 24	54 0	0	0	0
BACKGROUND	0 65				
TOTAL wo bkg TOTAL w bkg	67 41 67 65				
TEMPERATURE 15	C 58 F	RELATIVE HUMIDITY	70 %	REF. DISTANCE	3

RECEIVER # SOURCE #	6 1 2 3 4 5 6 7 8 9	STS-Hous Primary SAG Mill Ball Mil Regrind Regrind Regrind Regrind Regrind	Crusher Mill 1		79 80 80 80 81 81 80 81	X 823 393 767 413 714 413 812 412 996 412 013 412 031 412 091 412 008 412	378 311 287 228 223 219 208 204	Z 547 548 556 559 559 559 559 559	DST 2873 2236 2167 2033 2022 2011 2017 2006 1995
OCTAVE	OCTA\ 31.5		: 125	250	500	1000	2к	4K	8000
16K LINEAR	66	61	48	47	31	10	1.	0	0
0 A-wt -7 D	27	35	32	38	28	10	2	1	2

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 7 - STS-GMH-Rt265 -

PROJECT - HGMWCMP

CONTRIBUTOR	DR	SPL (Lin) DBA	DE SPHERE	BA ATTENU. PATH	ATION FROM /1000 Ft	REF. DISTANG	CE ATMOS.
SOURCE # 1	51	26	66	6	7 1000 FC	DWKKIEKS	1
SOURCE # 2	52	27	65	ň	ň	ŏ	1
SOURCE # 3	52	27	65	ñ	ñ	ŏ	ī
SOURCE # 4	45	20	58	ň	ň	Ŏ	ก้
SOURCE # 5	45	20	58	ŏ	ň	ŏ	ŏ
SOURCE # 6	45	žŏ	59	ŏ	ŏ	ŏ	ŏ
SOURCE # 7	45	20	58	ŏ	Ŏ	ŏ	ŏ
SOURCE # 8	45	20	58	Ŏ	Ŏ	Ŏ	Ŏ
SOURCE # 9	45	20	58	Ŏ	Ŏ	Ö	Ö
BACKGROUND	8	62		_	-	-	•
TOTAL wo bkg	58	33					
TOTAL w bkg	58	62					
TEMPERATURE 15	C	58 F	RELATIVE H	IUMIDITY	70 %	REF. DISTA	NCE 3

HGMWCMP.TXT DST RECEIVER # 7 STS-GMH-Rt265 Primary Crusher SAG Mill Ball Mill Regrind Mill 1 SOURCE # SOURCE # SOURCE # SOURCE # SOURCE # Regrind Mill 2 SOURCE # Regrind Mill 3 SOURCE # Regrind Mill 4 SOURCE # Regrind Mill 5 SOURCE # 9 Regrind Mill 6 PROJECTED OCTAVE LEVELS: OCTAVE 31.5 2ĸ 4ĸ 16K **LINEAR** -2 A-wt -7 П GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 8 - STS-SOR219 -PROJECT - HGMWCMP

SPL CONTRIBUTOR | DBA ATTENUATION FROM REF. DISTANCE DB(Lin) DBA 55 30 SPHERE PATH /1000 Ft BARRIERS ATMOS. SOURCE # SOURCE # 1. SOURCE # 56 57 5 SOURCE # SOURCE # Ō Ō SOURCE # SOURCE # SOURCE # SOURCE # BACKGROUND TOTAL wo bkg TOTAL w bkq

RELATIVE HUMIDITY 70 %

REF. DISTANCE

COORDINATE LOCATIONS (Ft) DST RECEIVER # STS-SOR219 SOURCE # Primary Crusher SOURCE # SAG Mill SOURCE # Ball Mill SOURCE # Regrind Mill 1 SOURCE # Regrind Mill 2 Regrind Mill 3 SOURCE # SOURCE # Regrind Mill 4 SOURCE # Regrind Mill 5 SOURCE # Regrind Mill 6 PROJECTED OCTAVE LEVELS: OCTAVE 31.5 2ĸ 4K 16ĸ LINEAR

TEMPERATURE 15 C 58 F

0				HGMWCM	P.TXT			
A-wt -7	22	30	26	33	21	3 1	1	-2
0				SOUND-CAL IVER # 9		PROJECTION 099GMH -	NS	
						PRO	DJECT - HGM	WCMP
SOURCE # TOTAL WO LETTER	1 2 3 4 5 6 7 8 9	SPL DB(Lin) 1 47 48 24 48 41 11 41 11 41 11 41 11 54 54 54	3 4 4 9 9 9 9 9 9	DBA SPHERE 69 68 68 59 58 59 59	ATTENUA PATH 0 0 0 0 0 0 0 0	TION FROM /1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF. DISTA BARRIERS 0 0 0 0 0 0 0	
TEMPERATURE	1.5	C 58 F	RE	LATIVE HU	MIDITY	70 %	REF. DIST	ANCE 3
RECEIVER # SOURCE # SOURCE # SOURCE # SOURCE #	1 P 2 S 3 B 4 R 5 R	COO TS-5099GM rimary CM AG Mill all Mill egrind M egrind M	MH rusher ill 1 ill 2	TE LOCATI	ONS (Ft 90708 79767 80714 80812 80996 81031	Y 38956 41378 41311 41287 41228 41223	Z D 576 548 112 556 102 556 101 559 99 559 99	67 66 74 56

						^	ī	<i>د</i> ۔	<i>U</i> 31	
RECEIVER #	t 9	STS-5099	GMH		90	708	38956	576		
SOURCE #	<i>t</i> 1	Primary		•			41378	548	11205	
SOURCE #		SAG Mill					41311	556	10267	
SOURCE #		Ball Mil					41287	556	10166	
SOURCE #	-	Regrind					41228	559	9974	
		Regimu	MILL T							
SOURCE #		Regrind	Mill 2				41223	559	9956	
SOURCE #	-	Regrind	Mill 3				41219	559	9938	
SOURCE #		Regrind					41208	559	9974	
SOURCE #	£ 8	Regrind					41204	559	9957	
SOURCE #	+ 9	Regrind	Mill 6		81	.026	41199	559	9938	
		J								
PROJECTED	OCTA	VE LEVELS	; :							
OCTAVE	31.		125	250	500	100	0 2K	4K	8000	
16K	J				300		·	110	0000	
LINEAR	53	48	34	31	12	0	0	0	0	
0	,,,	40	24	ЭL	12	V	U	U	U	
-	12	22	10	2.2	0	^	4	1	~	
A_wt	13	22	18	23	9	0	1	1	~2	
- 7										
Ü										
		/~ r~ /~	CONTRC	COLUMB	* I C C C I I	NID DD	ヘコピグエエグル			

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 10 - STS-SR29/204 -

PROJECT - HGMWCMP

CONTRIBUTOR	- 1	_	SPL.	DBA	ATTENUA		REF. DISTAN	CE
SOURCE #	1	DB(Li 47	n) DBA	SPHERE 69	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE #	2	48	23	68	ŏ	ŏ	Ö	2
SOURCE #	3	48	23	68	0	0	0	2

			HGMW	/CMP.TXT			
SOURCE # 4	40	19	59	0	0	0	0
SOURCE # 5	40	19	58	0	0	0	0
SOURCE # 6	40	19	59	0	0	0	0
SOURCE # 7	40	19	59	0	0	0	0
SOURCE # 8	40	19	59	0	0	0	0
SOURCE # 9	40	19	59	0	0	О	0
BACKGROUND	0	93					
TOTAL wo bkg	54	30					
TOTAL w bkg	54	93					
TEMPERATURE 15	С	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	3

RECEIVER #	10	STS-SR29	2/204		01	X 534 39	Y 553	Z 576	DST
SOURCE #		Primary					378	548	11907
SOURCE #		SAG Mil]				311	556	10961
SOURCE #	-	Ball Mi					287	556	10860
	_	Regrind	M311 2						
	_								
SOURCE #		Regrind					204	559	10654
SOURCE #	9	Regrind			81	026 41	199	559	10636
PROJECTED (ΟϹΤΑ	/E LEVELS	5:						
OCTAVE 16k	31.5	63	125	250	500	1000	2K	4K	8000
LINEAR	52	47	33	31	11	0	0	0	0
0									
A_wt	13	21	17	22	8	0	1	1	-2
SOURCE # SOURCE # SOURCE # SOURCE # SOURCE # PROJECTED OCTAVE 16K LINEAR 0	4 5 6 7 8 9 OCTA\ 31.5	Regrind Regrind Regrind Regrind Regrind Regrind /E LEVELS	Mill 1 Mill 2 Mill 3 Mill 4 Mill 5 Mill 6		80 81 81 80 81 81	996 41 013 41 031 41 991 41 008 41 026 41	228 223 219 208 204 199	559 559 559 559 559 559	10670 10652 10634 10672 10654 10636

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 11 - Prop-1 -

CONTRIBUTOR SOURCE # 1 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 8 SOURCE # 9 BACKGROUND	SPL DB(Lin) DBA 50 25 51 26 51 26 44 20 44 20 44 20 44 20 44 20 44 20 0 0	DBA SPHERE 67 66 66 58 58 59 59 59	ATTENUA PATH 0 0 0 0 0 0 0 0	710N FROM 71000 Ft 0 0 0 0 0 0 0 0	REF. DISTANC BARRIERS 0 0 0 0 0 0 0 0	ATMOS. 1 1 0 0 0 0 0
TOTAL wo bkg TOTAL w bkg	57 57 32					
TEMPERATURE 15	C 58 F	RELATIVE HU	MIDITY	70 %	REF. DISTAN	NCE 3

HGMWCMP.TXT COORDINATE LOCATIONS (Ft)

	COOKDINA	IL LOCAT	TONO ((1")				
SOURCE # 2 SAG SOURCE # 3 Ball SOURCE # 4 Regr SOURCE # 5 Regr SOURCE # 6 Regr SOURCE # 7 Regr SOURCE # 8 Regr	ary Crusher		797 808 808 810 810 810 810	312 417 996 417 913 417 931 417 991 417	378 311 287 228 223	Z 568 548 556 559 559 559 559	DST 8326 7411 7321 7156 7141 7124 7166 7150 7134	
PROJECTED OCTAVE LE OCTAVE 31.5 6		250	500	1000	2K	4K	8000	
	51 37	35	17	0	0	0	0	
0 A-wt 16 -7	25 21	26	14	0	1	1	-2	
0	GEOSONICS S				ECTION	S		
				- 4	PRO	JECT -	HGMWCMP	
CONTRIBUTOR DB(SOURCE # 1 55 SOURCE # 2 55 SOURCE # 3 55 SOURCE # 4 47 SOURCE # 5 47 SOURCE # 6 47 SOURCE # 7 47 SOURCE # 8 47 SOURCE # 8 47 SOURCE # 9 47 BACKGROUND 0 TOTAL wo bkg 61 TOTAL w bkg 61 TEMPERATURE 15 C	SPL Lin) DBA 29 30 30 20 20 20 20 20 0 35 35	DB SPHERE 63 62 62 58 57 58 58 58 58	PATE 0 0 0 0 0 0 0		FROM 00 Ft)))))))	BARRI 0 0 0 0 0 0 0		TMOS. 1 1 1 0 0 0 0 0 0 0
	COORDINAT	E LOCAT	IONS ((Ft)				
SOURCE # 2 SAG PROVIDED SOURCE # 4 Regressource # 5 Regressource # 6 Regressource # 7 Regressource # 8 Regre	ary Crusher		797 808 808 810 810 810 810	767 41: 714 41: 812 41: 996 41: 013 41: 031 41: 991 41:	287 228 223 219 208	Z 530 548 556 556 559 559 559 559 559	DST 4833 4763 4784 4843 4848 4853 4863 4867 4873	
PROJECTED OCTAVE LEVOCTAVE 31.5 63		250	500	1000	2K	4K	8000	

Page 9

16K LINEAR	60	55	41	40	23	2	0	0	0
0 A-wt -7	20	29	25	31	20	2	1	1	-2
វា									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 13 - Prop-3 -

PROJECT - HGMWCMP

CONTRIBUTOR	nr (SPL (Lin) DBA	DBA SPHERE	ATTENU/ PATH	ATION FROM /1000 Ft	REF. DISTANGE BARRIERS	CE ATMOS.
SOURCE # 1	51	26	66	1 70 111	71000 11	0	1
SOURCE # 2	50	25	67	ň	ň	ň	1
SOURCE # 2	50	25	67	ň	ŏ	ň	1
SOURCE # 4	42	19		Ŏ	Ŏ	Ŏ	7
			59	Ŏ	Ŏ	V	Ŏ
SOURCE # 5	42	19	58	U	U	U	U
SOURCE # 6	42	19	59	0	0	0	0
SOURCE # 7	42	19	59	0	0	0	0
SOURCE # 8	42	$\overline{19}$	59	Ŏ	Ŏ	Ŏ	Ŏ
SOURCE # 9	42	$\overline{19}$	59	Ō	Ō	Ö	Ó
BACKGROUND	0	0		•	·	-	-
TOTAL wo bkg	56	32					
TOTAL w bkg	56	32					
TEMPERATURE 15	С	58 F	RELATIVE HU	MIDITY	70 %	REF. DISTA	NCE 3

COORDINATE LOCATIONS (Ft)

							Х		Υ	Z	ÐST
RECEIVER	#	13	Prop-3				72467	400	06	525	
SOURCE	#	1	Primary	Crusher			79767	413	78	548	7427
SOURCE	#	2	SAG Mill				80714	413	11	556	8350
SOURCE	#	3	Ball Mil]			80812	412	87	556	8443
SOURCE	#	4	Regrind	Mill 1			80996	412	28	559	8616
SOURCE	#	5	Regrind	Mill 2			81013	412	23	559	8632
SOURCE	#	6	Regrind	Mill 3			81031	412	19	559	8649
SOURCE	#	7	Regrind	Mill 4			80991	412	80	559	8608
SOURCE	#	8	Regrind	Mill 5			81008	412	04	559	8624
SOURCE	#	9	Regrind	Mill 6			81026	411	99	559	8641
PROJECTED	C	CTA	VE LEVELS	5:							
OCTAVE		31.5	5 63	125	250	500	10	00	2ĸ	4K	8000
16K											
LINEAR		55	50	36	34	16		0	0	0	0
0											
A-wt		15	24	20	26	13		0	1	1	-2

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 14 - Prop-4 -

PROJECT - HGMWCMP

CONTRIBUTOR | SPL | DBA ATTENUATION FROM REF. DISTANCE | DB(Lin) DBA SPHERE PATH /1000 FT BARRIERS ATMOS. SOURCE # 1 46 22 69 0 0 0 2

				HGMWC	MP.TXT					
SOURCE # BACKGROU	3 4 5 6 7 8 9	46 45 38 38 38 38 38 38 38 38	22 22 19 19 19 19 19 19	70 70 59 58 59 59 59	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0 0		2 0 0 0 0 0
TOTAL WO TOTAL W	bkg bkg	52 52	30 30							
TEMPERATUR	E 15	C 58 I	= RI	ELATIVE	HUMIDITY	70 %		REF. D	ISTANCE	3
		(COORDINA	ATE LOCA	rions (Ft)				
RECEIVER # SOURCE #	1 F S S S S S S S S S S S S S S S S S S	SAG Milasall Mistegrind Regrind Regrind Regrind Regrind Regrind	 Mi] 1 Mi] 2 Mi] 3 Mi] 4	•	685 797 807 808 809 810 810 810 810	67 413 14 413 12 412 96 412 13 412 31 412 91 412 08 412	78 11 87 28 23 19 08 04	Z 500 548 556 556 559 559 559 559	DST 13007 13799 13874 14009 14021 14036 13995 14008 14022	
PROJECTED (OCTAVE	OCTAVE 31.5	LEVELS 63	5: 125	250	500	1000	2K	4K	8000	
16K LINEAR O	50	46	31.	28	7	0	0	0	0	
A-wt -7	11	19	15	20	4	0	1	1	-2	
		GEO		SOUND-CA	ALC SOUN 15 - Pr		CTION	S		
							PRO	JECT -	HGMWCMP	
CONTRIBUTO SOURCE # SOURCE # SOURCE # SOURCE # SOURCE #	1 2 3 4	SPI DB(Lin) 48 47 47 40 40		DE SPHERE 68 69 69 59 59	BA ATTEN PATH 0 0 0 0 0		0 Ft	REF. DI BARRI 0 0 0 0 0		TMOS. 2 2 2 2 0

CONTRIBUTOR	SPL DB(Lin) DBA	DBA SPHERE	ATTENUATION FROM PATH /1000 F		CE ATMOS.
SOURCE # 1	48 23	68	0 , 200	0	7
SOURCE # 2	47 23	69	ňň	ň	ว็
SOURCE # 3	47 23	69	0 0	Ň	2
			0 0	Ų.	2
SOURCE # 4	40 19	59	0 0	0	0
SOURCE # 5	40 19	58	0 0	0	0
SOURCE # 6	40 19	59	0 0	0	0
SOURCE # 7	40 19	59	Ó Ó	Ö	Ō
SOURCE # 8	40 19	59	Ō Ō	Ō	Ō
SOURCE # 9	40 19	59	Ŏ Ŏ	Ŏ	Ŏ
BACKGROUND	0 0		•	•	•
TOTAL wo bkg	53 30				
TOTAL w bkg	53 30				
TEMPERATURE 15	C 58 F	RELATIVE HU	MIDITY 70 %	REF. DISTA	NCE 3

Page 11

COORDINATE LOCATIONS (Ft)

SOURCE #	1 1 2 3 4 1 5 6 1 7 1	SAG Mill Ball Mil Regrind Regrind Regrind Regrind			797 807 808 809 810 810 809	767 4 714 4 812 4 996 4 013 4 031 4	Y 3412 1378 1311 1287 1228 1223 1219 1208	Z 475 548 556 556 559 559 559 559	DST 10757 11369 11423 11516 11525 11536 11499 11509
SOURCE # SOURCE #	8 i	Regrind Regrind	Mill 6				11199	559 559	11519
· · · · · · · · · · · · · · · · · · ·	CTAVI 31.5	J		250	500	1000) 2K	4K	8000
LINEAR	52	47	33	31	11	0	0	0	0
0 A-wt -7	13	21	17	22	8	0	1	1	-2
0								_	

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 16 - Prop-6 -

PROJECT - HGMWCMP

CONTRIBUTOR	SPL	DBA	ATTENUA	ATION FROM	REF. DISTAN	CE
	DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	46 22	69	0	0	0	2
SOURCE # 2	46 22	69	0	0	0	2
SOURCE # 3	46 22	69	0	0	0	2
SOURCE # 4	38 19	59	Ŏ	Ŏ	Ó	0
SOURCE # 5	$\frac{1}{38}$ $\frac{1}{19}$	58	Ö	Ŏ	Õ	Ō
SOURCE # 6	38 19	59	Ŏ	Ŏ	Ō	Ó
SOURCE # 7	38 19	59	Ō	Ō	Ŏ	Ó
SOURCE # 8	38 19	59	Ŏ	Ŏ	Ō	Õ
SOURCE # 9	38 19	59	Ŏ	Ŏ	Ŏ	Ō
BACKGROUND	0 0	3.5	Ū	ŭ	-	-
TOTAL wo bkg	52 30					
TOTAL w bkg	52 30					
TEMPERATURE 15	C FO -	DEL 4771/17 (111	LATE ON THICK	70.0/	DEE OTOTAL	NCE 2

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

		X	Υ	Z	DST
RECEIVER # 16	Prop-6	75403	29145	500	
SOURCE # 1	Primary Crusher	79767	41378	548	12988
SOURCE # 2	SAG Mill	80714	41311	556	13275
SOURCE # 3	Ball Mill	80812	41287	556	13293
SOURCE # 4	Regrind Mill 1	80996	41228	559	13314
SOURCE # 5	Regrind Mill 2	81013	41223	55 9	13317
SOURCE # 6	Regrind Mill 3	81.031	41219	559	13321
SOURCE # 7	Regrind Mill 4	80991	41208	559	13294
SOURCE # 8	Regrind Mill 5	81008	41204	559	13298
SOURCE # 9	Rearind Mill 6	81026	41199	559	13301

PROJECTED OCTAVE 16K	OCTAVE 31.5	LEVELS 63	: 125	250	500	1000	2K	4K	8000
LINEAR	51	46	31	29	8	0	0	0	0
A-wt -7	11	20	15	20	5	0	1	1	-2
n									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 17 - Prop-7 -

PROJECT - HGMWCMP

CONTRIBUTOR	SPL DB(Lin)	•		N FROM REF. .000 Ft BAI	DISTANCE RRIERS ATMOS.
SOURCE # 1		30 62		0	0 1
SOURCE # 2		31 62	Ŏ	Ŏ	ň ī
SOURCE # 3		31 62	ň	ň	ň ī
SOURCE # 4		$\tilde{21}$ $\tilde{57}$	ň	ň	ň ō
SOURCE # 5		20 57	ň	Ŏ	ŏ ŏ
SOURCE # 6	-	57	ŏ	Ŏ	ŏ ŏ
SOURCE # 7	. –	21 57	Ŏ	Ŏ	ŏ ŏ
SOURCE # 8		21 57	ŏ	Ŏ	ň ň
SOURCE # 9		21 57	ŏ	Ŏ	ň ň
BACKGROUND	Ö	0	v	v	· ·
TOTAL wo bkg	62	36			
TOTAL w bkg	62	36			
TEMPERATURE 15	C 58 F	RELATIVE	HUMIDITY 70	% REF	. DISTANCE 3

COORDINATE LOCATIONS (Ft)

BPC==1/EB	,,	47	B	X	Y	Z	DST
RECEIVER			Prop-7	80365	37050	500	
SOURCE	#	1	Primary Crusher	79767	41378	548	4369
SOURCE	#	2	SAG Mill	80714	41311	556	4276
SOURCE	#	3	Ball Mill	80812	41287	556	4261
SOURCE	#	4	Regrind Mill 1	80996	41228	559	4225
SOURCE	#	5	Regrind Mill 2	81013	41223	559	4223
SOURCE	#	6	Regrind Mill 3	81031	41219	559	4222
SOURCE	#	7	Regrind Mill 4	80991	41208	559	4205
SOURCE	#	8	Regrind Mill 5	81008	41204	559	4203
SOURCE	#	9	Regrind Mill 6	81026	41199	55 9	4201
PROJECTED) (CTA	VE LEVELS:				

OCTAVE 16K	31.5	63	: 125	250	500	1000	2K	4K	8000
LINEAR	61	56	42	41	24	4	0	0	0
U A-wt	21	30	26	32	21	4	1	1	-2
-7 0									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 18 - Prop-8 -

PROJECT - HGMWCMP

CONTRIBUTOR | SPL | DBA ATTENUATION FROM REF. DISTANCE | Page 13

SOURCE # 1 SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 8 SOURCE # 9 BACKGROUND	DB(Lin) DBA 46 22 46 22 46 22 39 19 39 19 39 19 39 19 39 19 39 19 39 19		MP.TXT PATH 0 0 0 0 0 0 0 0	/1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0	BARRIERS 0 0 0 0 0 0 0 0	ATMOS. 2 2 2 0 0 0 0 0
TOTAL wo bkg TOTAL w bkg TEMPERATURE 15	52 30 52 30 C 58 F	RELATIVE H	NUMIDITY	70 %	REF. DISTA	NCE 3

RECEIVER # SOURCE #	1 2 3 4 5 6 7 8	Prop-8 Primary SAG Mill Ball Mil Regrind Regrind Regrind Regrind Regrind	1 Mill 1 Mill 2 Mill 3 Mill 4 Mill 5		79; 80; 80; 81; 81; 80; 81;	767 41 714 41 812 41 996 41 013 41 031 41 991 41	Y 317 378 311 287 228 223 219 208 204 199	Z 525 548 556 559 559 559 559 559	DST 13617 13031 12958 12811 12798 12785 12786 12786 12784 12770
PROJECTED	OCTAV		•						
OCTAVE	31.5	63	125	250	500	1000	2K	4K	8000
16K LINEAR	51	46	31	29	8	0	0	0	0
0	31	*+0	2.T	29	0	U	U	U	U
Ă-wt	11	20	15	20	5	0	1	1	-2
-7									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 19 - Prop-9 -

CONTRIBUTOR		CDI	1 pps	A 7777 TO \$11.1	ATTON FROM	DEE DICTAN	~= i
CONTRIBUTOR	DB(L	SPL in) DBA	DBA SPHERE	PATH	/1000 Ft	REF. DISTANCE BARRIERS	ATMOS.
SOURCE # 1	46	22	69	0	0	0	2
SOURCE # 2	47	23	69	0	0	0	2
SOURCE # 3	47	23	69	0	0	0	2
SOURCE # 4	39	19	59	0	0	0	0
SOURCE # 5	39	19	58	0	0	0	0
SOURCE # 6	39	19	59	0	0	0	0
SOURCE # 7	39	19	59	0	0	0	0
SOURCE # 8	39	19	59	0	0	0	0
SOURCE # 9	39	19	59	0	0	0	0
BACKGROUND	0	0					
TOTAL wo bkg	53	30					
TOTAL w bkg	53	30					
TEMPERATURE 15	C 5	8 F	RELATIVE HUN	YTIDIN	70 %	REF. DISTAN	NCE 3

HGMWCMP.TXT

COORDINATE LOCATIONS (Ft)

						Х	Υ	Z	DST
RECEIVER #	[‡] 19	Prop-9			9	0181	33532	525	
SOURCE #	^t 1	Primary		•	7		41378	548	13038
SOURCE #	ŧ 2	SAG Mill			8	0714	41311	556	12253
SOURCE #	ŧ 3	Ball Mil			8	0812	41287	556	12162
SOURCE #		Regrind	Mill 1				41228	559	11983
SOURCE #	£ 5	Regrind					41223	559	11966
SOURCE #	-	Regrind					41219	559	11950
SOURCE #		Regrind	Mill 4				41208	559	11974
SOURCE #		Regrind	Mill 5				41204	559	11958
SOURCE #	ŧ 9	Regrind	Mill 6		8	1026	41199	559	11941
PROJECTED	OCTA'		-						0000
OCTAVE	31.	5 63	125	250	500	100	00 2K	4K	8000
16K					_				•
LINEAR	51	46	32	29	9	0) () 0	0
0	4.0	20	4.0	24	-	^			2
A_wt	12	20	16	21	6	0)	L 1	-2
-7									
D		CEC	CONTCC	COLINID	CA1 C CO	UND DE	A-1-CTT	NIC.	

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 20 - Prop-10 -

PROJECT - HGMWCMP

CONTRIBUTOR	SPL DB(Lin) DBA	,	ATTENUATION FROM PATH /1000 Ft		CE ATMOS.
SOURCE # 1 SOURCE # 2	54 29 56 31	63 62	0 0	0 0	1
SOURCE # 3 SOURCE # 4	56 31 49 21	61 57	0 0 0	0 0	1 0
SOURCE # 5 SOURCE # 6	49 21 49 21	57 57	0 0	0 0	0 0
SOURCE # 7 SOURCE # 8	49 21 49 21	57 57	0 0 0	0 0	0 0
SOURCE # 9 BACKGROUND	49 21 0 0	57	0 0	0	0
TOTAL wo bkg TOTAL w bkg	62 36 62 36				
TEMPERATURE 15	C 58 F	RELATIVE HUM	IDITY 70 %	REF. DISTAN	NCE 3

		X	Y	Z	DST
RECEIVER # 20	Prop-10	84972	41819	550	
SOURCE # 1	Primary Crusher	79767	41378	548	5223
SOURCE # 2	SAG Miĺl	80714	41311	556	4287
SOURCE # 3	Ball Mill	80812	41287	556	4193
SOURCE # 4	Regrind Mill 1	80996	41228	559	4019
SOURCE # 5	Regrind Mill 2	81013	41223	559	4003
SOURCE # 6	Regrind Mill 3	81031	41219	559	3986
SOURCE # 7	Regrind Mill 4	80991	41208	559	4027
SOURCE # 8	Regrind Mill 5	81008	41204	559	4011

Page 15

SOURCE #	# 9 Re	egrind (Mill 6	HGMW	СМР.ТХТ 81	026 4 1 1	L 9 9	559	3994	
PROJECTED OCTAVE 16K	OCTAVE 31.5	LEVELS 63	: 125	250	500	1000	2к	4K	8000	
LINEAR O	60	55	42	41	24	1	0	0	0	
A-wt -7	21	29	26	32	20	1	1	1	-2	

HGMWCMP.TXT

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 21 - Greg561 -

PROJECT - HGMWCMP

CONTRIBUTOR SOURCE # 1 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 7 SOURCE # 8 SOURCE # 9 BACKGROUND	52 2 51 2 44 2 44 1 44 2 44 2 44 2 44 2	7 6 6 6 6 6 0 5 9 5 0 5 0 5 0 5	HERE PATE OF THE P	ENUATION F FH /1000 0 0 0 0 0 0 0	Ft BAR		MOS. 1 1 1 0 0 0 0 0
TOTAL wo bkg TOTAL w bkg	58 3 58 3	3 3					
TEMPERATURE :	15 C 58 F	RELAT	IVE HUMIDI	ry 70 %	REF.	DISTANCE	3
RECEIVER # 21 SOURCE # 1 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 8 SOURCE # 9	Greg561 Primary C SAG Mill Ball Mill Regrind M Regrind M Regrind M	ill 1 ill 2 ill 3 ill 4 ill 5	77 79 80 80 81 83 83	(Ft) X 7384 3513 9767 4137)714 4131)812 4128)996 4122 1013 4122 1031 4121)991 4120 1008 4120	8 548 1 556 7 556 8 559 3 559 9 559 8 559 4 559	DST 6679 7015 7040 7080 7085 7090 7060 7066 7071	
PROJECTED OCTA OCTAVE 31. 16K		125 2	50 500	1000	2K 4K	8000	
LINEAR 56	5 52	37	36 18	0	0	0 0	
A-wt 17	7 25	21	28 15	0	1	1 -2	
۵			ND-CALC SOU R # 22 - 0		TIONS		

CONTRIBUTOR	SPL	DBA	ATTENUA	ATION FROM	REF. DISTAN	CE
	DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	52 27	65	0	0	0	1
SOURCE # 2	52 26	65	0	0	0	1
SOURCE # 3	52 26	65	0	0	0	1
SOURCE # 4	44 20	58	0	0	0	0
SOURCE # 5	44 19	58	0	0	0	0
SOURCE # 6	44 20	59	0	0	0	0

HGMWCMP	. TXT				
SOURCE # 7 44 20 59 SOURCE # 8 44 20 59 SOURCE # 9 44 20 59 BACKGROUND 0 0	0 0 0	0 0 0	0 0 0		0 0 0
TOTAL wo bkg 58 33 TOTAL w bkg 58 33					
TEMPERATURE 15 C 58 F RELATIVE HUM	IDITY 70	0 %	REF. D	DISTANCE	3
COORDINATE LOCATIO	NS (Ft)				
DECETVED # 22 CmagEGE	X 77248	Y 25242	Z 520	DST	
RECEIVER # 22 Greg565 SOURCE # 1 Primary Crusher SOURCE # 2 SAG Mill SOURCE # 3 Ball Mill SOURCE # 4 Regrind Mill 1 SOURCE # 5 Regrind Mill 2 SOURCE # 6 Regrind Mill 3	79767 80714 80812 80996 81013 81031	35342 41378 41311 41287 41228 41223 41219	548 556 556 559 559	6540 6903 6932 6978 6983 6989	

SOURCE # SOURCE # SOURCE #	t 7 t 8	Regrind Regrind Regrind Regrind	Mill 4 Mill 5		80 81	991 412 008 412 026 411	208 204	559 559 559	6989 6958 6964 6969
PROJECTED	OCTAV	E LEVELS	S:						
OCTAVE	31.5		125	250	500	1000	2ĸ	4K	8000
16K									
LINEAR	56	52	38	36	18	0	0	0	0
0									
A-wt	17	25	22	28	15	0	1	1	-2
-7									

APPENDIX I

Soundcalc Output -Haile Gold Mine One Mile Radius Results

OneMileResults.TXT GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 1 - 1M-1 -

CONTRIBUTOR SOURCE # 1 SOURCE # 2 SOURCE # 3 SOURCE # 4 SOURCE # 5		SPL in) DBA 21 22 22 19 19	DBA SPHERE 71 71 71 59 59	ATTENUA PATH 0 0 0 0 0	ATION FROM /1000 Ft 0 0 0 0 0	REF. DISTAN BARRIERS 0 0 0 0	CE ATMOS. 3 3 3 0
SOURCE # 6 SOURCE # 7 SOURCE # 8 SOURCE # 9 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 13 SOURCE # 14	37 37 37 30 30 30 30 30	19 19 19 19 19 19 19	59 59 59 63 63 63 63	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 3 3 4 4 4
SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 18 SOURCE # 19 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 23	30 42 32 32 32 32 32 32 46	19 27 19 19 19 19 19	63 77 63 63 63 63 63 63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	4 7 3 3 3 3 3 5
SOURCE # 24 SOURCE # 25 SOURCE # 26 SOURCE # 27 SOURCE # 29 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 32 SOURCE # 33	32 32 32 32 32 32 45 33 33	19 19 19 19 19 19 30 19	63 63 63 63 63 75 63	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	33333535
SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42	33 33 33 47 36 36 35 35	19 19 19 19 32 21 21 21 21	63 63 63 74 72 72 72 72 72	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	3 3 4 2 2 2 2 2
SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 46 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	35 36 36 37 37 37 37 37	21 21 21 21 21 21 21 20 20 0	72 71 71 71 71 71 71 62 62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TOTAL wo bkg TOTAL w bkg	55 55	40 40					

SOURCE # 50 SOURCE # 10 SOURCE # 12 SOURCE	Pri SAGI REGISTA REGIS	mary Cill Mill Mill Mill Mill Mill Mill Mill	ill 1 ill 2 ill 3 ill 4 ill 5		7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1750 1700 1650 1910 8200 8150 8050 8050 8210 7450 7350 77200 77150 77410 00550 00450 00450 00450 00450	39107 41318 41219 41219 41229 4129 41	81178398449000000000000000000000000000000000	Z68555555555555555555555555555555555555	DST 17026 16078 15978 15778 15779 15773 15773 15773 15774 25079 25136 25194 25252 25367 25367 18491 18593 18491 19753 19791 19828 19907 16686 16790 16860 166791
SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 35 SOURCE # 36 SOURCE # 36 SOURCE # 40 SOURCE # 42 SOURCE # 42 SOURCE # 44 SOURCE # 44 SOURCE # 45 SOURCE # 50 SOURCE # 51	HOS HOS JOS JOS JOS CPD CPD CPD SPD SPD SPD SKP SKP LPD LPD TSF TSF	ADZ 3 ABU AHT 1 AHT 2 AHT 3 ADZ 1 ADZ 2 ADZ 3 ABU RILL 1 RILL 2 RILL 3 DRILL 1 DRILL 2 RILL 3 HT DZ	<u>)</u>		7 7 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7	7150 7410 0600 0550 0500 0450 0400 0350	4315 4341 4370 4360 4360 4350 4371	50 00 00 50 00 50 00 50 00 50 00 50 00 0	720 720 630 630 630 630 630 630	19907 19707 16686 16720 16755 16790 16825 16860
PROJECTED OCT OCTAVE 31 16K		EVELS:	125	250	500	10	00	2ĸ	4K	8000
	3	49	46	44	10		0	0	0	0

OneMileResults.TXT

A-wt 13 22 30 35 6 0 1 1 -2 -7

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 2 - 1M-2 -

CONTRIBUTOR	SPL	l DBA	ATTENUA	ATION FROM	REF. DISTAN	CE
	DB(Lin) D		PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1 SOURCE # 2	47 23 48 24		0 0	0 0	0	2 2
SOURCE # 3	48 24		ŏ	ŏ	ŏ	2
SOURCE # 4	40 19	59	0	Ö	0	0
SOURCE # 5	40 19		0	0	0	0
SOURCE # 6 SOURCE # 7	40 19 40 19		0	0 0	0 0	0 0
SOURCE # 7	40 19		0 0	ŏ	Ö	Ö
SOURCE # 9	40 19		ŏ	ŏ	ŏ	0
SOURCE # 10	31 19	63	0	0	0	3
SOURCE # 11	31 19		0	0	0	3
SOURCE # 12 SOURCE # 13	31 19 31 19		0 0	0 0	0	3
SOURCE # 13	31 19		ŏ	ŏ	ŏ	3
SOURCE # 15	31 19	63	Ó	Ō	Ō	3
SOURCE # 16	44 29		0	0	0	6
SOURCE # 17 SOURCE # 18	34 19 34 19		0 0	0 0	0	2
SOURCE # 18	34 19		Ö	ŏ	ŏ	2
SOURCE # 20	34 19	63	ŏ	ŏ	Ŏ	2
SOURCE # 21	34 19		0	0	Õ	2
SOURCE # 22 SOURCE # 23	35 19 48 34		0 0	0 0	0	2
SOURCE # 23	36 19		Ŏ	ŏ	ŏ	2
SOURCE # 25	36 19	63	0	0	Ŏ	ž
SOURCE # 26	35 19		0	0	0	2
SOURCE # 27 SOURCE # 28	35 19 35 19		0	0	0	2
SOURCE # 28	35 19		0	0 0	Ö	2
SOURCE # 30	49 35	71	ŏ	ŏ	ŏ	3
SOURCE # 31	38 20		0	0	0	2
SOURCE # 32 SOURCE # 33	38 20 38 20		0	0	0	2
SOURCE # 33 SOURCE # 34	38 20 38 20		0	0 0	0 0	2
SOURCE # 35	38 20		ŏ	ŏ	ŏ	2
SOURCE # 36	38 20		0	0	0	333333622222242222223222222222222222222
SOURCE # 37 SOURCE # 38	52 39 37 21	69 71	0 0	0 0	0	2
SOURCE # 38	37 21	71	Ŏ	ŏ	0	2
SOURCE # 40	37 21	71	Ŏ	ŏ	Ŏ	ž
SOURCE # 41	36 21	71	0	0	Õ	2
SOURCE # 42 SOURCE # 43	36 21 36 21	71 71	0	0 0	0 0	2
SOURCE # 43	36 21 39 22	71 70	0 0	ŏ	ŏ	1
SOURCE # 45	39 22	70	0 0 0 0	0	0	2 1 1 1 1
SOURCE # 46	39 22 39 22	70 70	0	0	0	1
SOURCE # 47 SOURCE # 48	39 22 39 22	70 70	U N	0 0	0 0	⊥ 1
SOURCE # 46	39 22	70 70	0	ŏ	ő	1.
SOURCE # 50	37 20	62	0	Ŏ O	0	1 2 2
SOURCE # 51	37 20	62	0	0	0	2
BACKGROUND	0 0					

TOTAL wo bkg 59 43 TOTAL w bkg 59 43

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

COORDINATE LOCATIONS (Ft)

RECEIVER # 2 SOURCE # 3 SOURCE # 3 SOURCE # 5 SOURCE # 5 SOURCE # 6 SOURCE # 6 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 12 SOURCE # 15 SOURCE # 15 SOURCE # 15 SOURCE # 22 SOURCE # 23 SOURCE # 22 SOURCE # 30 SOURCE # 33 SOURCE # 34 SOURCE # 34 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 34 SOURCE # 44	1M-2 Primary C SAG Mill Ball Mill Regrind M Regrind M Regrind M Regrind M Regrind M Regrind M ROSAHT 1 ROSAHT 2 ROSADZ 2 ROSADZ 3 ROSADZ 2 ROSADZ 3 ROSADZ 1 JPHT 3 JPHT 2 JPHT 3 JPDZ 1 JPHT 3 JPDZ 1 JPHT 3 JPDZ 2 JPDZ3 JPBU HOSAHT 1 JPHT 2 JPHT 3 JPDZ 1 JPHT 3 JPDZ 2 JPDZ3 JPBU HOSAHT 1 JPHT 2 JPHT 3 JPDZ 1 JPDZ 2 JPDZ3 JPBU HOSAHT 1 JPHT 2 JPHT 3 JPDZ 1 JPDZ 2 JPDZ3 JPBU HOSAHT 1 JPHT 2 JPDZ 2 JPDZ3 JPBU HOSAHT 1 JPHT 2 JPHT 3 JPDZ 1 JPHT 3 JPDZ 1 JPHT 3 JPHT 3 JPHT 1 JPHT 2 JPHT 3 JPHT	1111 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1		894 797 808 810 810 7118 7117 7117 7118 7117 7118 7117 7118 7117 7118 7117 7118 7117 7118 718 7	67426311186000000000000000000000000000000000	Y 48010 41378 41378 41219 41228 41219 41208 41209 314950 3	556 559 559 559 559 559 5680 6880 6880 6880 6880 6880 6880 6880	DST 11733 11004 10941 10835 10824 10851 108640 10823 219183 219183 219183 220123 221
SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 43	CPDRILL 3 SPDRILL 1 SPDRILL 2 SPDRILL 3	1 2 3		754 754 740 739 739	150 100 100 150 150 150 150 150 150 150	33650 33600 34800 34750 34700	460 480 480 480 420 420 420 440 440 620	20052 20123 20324 20395 20465
PROJECTED OCTA OCTAVE 31.		125	250	500	100	00 2	к 4к	800

16K LINEAR	56	52	49	50	17	8	0	0	0
0 A-wt -7	17	25	33	41	14	8	1	1	-2
-, n									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 3 - 1M-3 -

CONTRIBUTOR SPL				REF. DISTAN	
DB(Lin) DBA SOURCE # 1 49 24	SPHERE 68	PATH 0	/1000 Ft 0	BARRIERS O	ATMOS. 2
SOURCE # 2 49 25	68	ŏ	Ŏ	0	2
SOURCE # 3 49 25	68	0	Ō	Õ	2
SOURCE # 4 41 19	59	0	0	0	o O
SOURCE # 5 41 19 SOURCE # 6 41 19	59 59	0	0 0	0	0
SOURCE # 6 41 19 SOURCE # 7 41 19	59 59	0	Ö	ŏ	ŏ
SOURCE # 8 41 19	59	ŏ	ŏ	ŏ	ŏ
SOURCE # 9 41 19	59	Ŏ	Ó	Ö	0
SOURCE # 10 32 19	63	0	0	0	3
SOURCE # 11 32 19	63	0	0	0	3
SOURCE # 12 32 19 SOURCE # 13 32 19	63 63	0 0	0	0 0	3 3
SOURCE # 13 32 19	63	ŏ	ŏ	ŏ	3
SOURCE # 15 32 19	63	ŏ	ŏ	Ŏ	3
SOURCE # 16 45 30	75	0	Ō	0	5
SOURCE # 17 36 19	62	Ŏ	0	0	2
SOURCE # 18 36 19 SOURCE # 19 36 19	62 62	0	0 0	0 0	2
SOURCE # 19 36 19 SOURCE # 20 36 19	62 62	ő	Ö	Ö	2 2
SOURCE # 21 36 19	62	ŏ	ŏ	ŏ	2
SOURCE # 22 36 20	63	0	0	0	2
SOURCE # 23 50 36	71	0	0	0	3
SOURCE # 24 38 20	62	0	0	0	1 1
SOURCE # 25 38 20 SOURCE # 26 38 20	62 62	0	0 0	0 0	1
SOURCE # 20 30 20	62	ŏ	ŏ	ŏ	ī
SOURCE # 28 38 20	62	Ō	Ō	Ö	1
SOURCE # 29 38 20	62	0	0	Ö	1
SOURCE # 30 53 39	68	0	0	0	2 1
SOURCE # 31 41 20 SOURCE # 32 40 20	62 62	0	0 0	0	1
SOURCE # 33 40 20	62	ŏ	ŏ	ŏ	ī
SOURCE # 34 40 20	62	Ŏ	0	Ō	1
SOURCE # 35 40 20	62	0	0	0	1
SOURCE # 36 40 20	62 66	0	0	0	1 2
SOURCE # 37 55 42 SOURCE # 38 37 21	66 71	0	0	Ö	1
SOURCE # 39 37 21	71	ŏ	ŏ	ŏ	ī
SOURCE # 40 37 21	71	Ó	0	0	1
SOURCE # 41 37 21	71	0	0	<u>0</u>	1
SOURCE # 42 37 21	71 71	0	0	0 0	1 1
SOURCE # 43 37 21 SOURCE # 44 42 24	71 69	0 0	0 0	Ö	1
SOURCE # 45 42 24	69	ŏ	ŏ	ŏ	1 1 1
SOURCE # 46 42 24	69	0	0	0	$\overline{f 1}$
SOURCE # 47 41 23	69	0	0	0	1
SOURCE # 48 41 23	69 60	0	0	0	<u> </u>
SOURCE # 49 41 23 SOURCE # 50 35 19	69 63	0 0	0 0	0 0	1 1 2 2
SOURCE # 50 35 19	63	ŏ	ŏ	ŏ	2

BACKGROUND 0 0

Ü

TOTAL wo bkg 61 45 TOTAL w bkg 61 45

TEMPERATURE 15 C 58 F RELATIVE HUMIDITY 70 % REF. DISTANCE 3

		X	Υ	Z	DST
RECEIVER # 3	1M-3	83413	50420	530	
SOURCE # 1	Primary Crusher	79767	41378	548	9749
SOURCE # 2	SAG Mill	80714	41311	556	9499
SOURCE # 3 SOURCE # 4	Ball Mill Regrind Mill 1	80812 80996	41287 41228	556 559	9495 9504
SOURCE # 4 SOURCE # 5	Regrind Mill 2	81013	41223	559	9505
SOURCE # 6	Regrind Mill 3	81031	41219	559	9504
SOURCE # 7	Regrind Mill 4	80991	41208	559	9525
SOURCE # 8	Rearind Mill 5	81008	41204	559	9524
SOURCE # 9	Regrind Mill 6	81026	41199	559	9525
SOURCE # 10	ROSAHT 1	71900	35000	680	19244
SOURCE # 11 SOURCE # 12	ROSAHT 2	71850 71800	34950 34900	680 680	19314 19384
SOURCE # 12	ROSAHT 3 ROSADZ 1	71750	34850	680	19454
SOURCE # 14	ROSADZ 2	71700	34800	680	19524
SOURCE # 15	ROSADZ 3	71650	34750	680	19594
SOURCE # 16	ROSA BUA	71910	35010	675	19230
SOURCE # 17	JPHT 1	78200	39000	680	12554
SOURCE # 18	JPHT 2	78150 78100	38950 38900	680 680	12620 12687
SOURCE # 19 SOURCE # 20	JPHT 3 JPDZ 1	78050	38850	680	12753
SOURCE # 21	JPDZ 2	78000	38800	680	12819
SOURCE # 22	JPDZ3	78210	39010	680	12541
SOURCE # 23	JPBU	78210	39010	680	12541
SOURCE # 24	HOSAHT 1	77400	43400	720	9245
SOURCE # 25 SOURCE # 26	HOSAHT 2	77350 77300	43350 43300	720 720	9315 9386
SOURCE # 20	HOSAHT 3 HOSADZ 1	77250	43250	720 720	9456
SOURCE # 28	HOSADZ 2	77200	43200	720	9527
SOURCE # 29	HOSADZ 3	77150	43150	720	9597
SOURCE # 30	HOSABU	77410	43410	720	9231
SOURCE # 31	JOSAHT 1	80600	43700	630	7285
SOURCE # 32 SOURCE # 33	JOSAHT 2 JOSAHT 3	80550 80500	43650 43600	630 630	7351 7416
SOURCE # 33	JOSADZ 1	80450	43550	630	7482
SOURCE # 35	JOSADZ 2	80400	43500	630	7548
SOURCE # 36	JOSADZ 3	80350	43450	630	7614
SOURCE # 37	JOSABU	80610	43710	630	7272
SOURCE # 38 SOURCE # 39	CPDRILL 1	75500 75450	33700 33650	460 460	18498 18564
SOURCE # 39	CPDRILL 2 CPDRILL 3	75400 75400	33600	460	18631
SOURCE # 41	SPDRILL 1	74000	34800	480	18237
SOURCE # 42	SPDRILL 2	73950	34750	480	18305
SOURCE # 43	SPDRILL 3	73900	34700	480	18374
SOURCE # 44	SKPDRILL 1	75600	42100	420	11413
SOURCE # 45 SOURCE # 46	SKPDRILL 2	75550 75500	42050 42000	420 420	11484 11555
SOURCE # 40	SKPDRILL 3 LPDRILL 1	76900	39600	440	12629
SOURCE # 48	LPDRILL 2	76850	39550	440	12697
SOURCE # 49	LPDRILL 3	76800	39500	440	12766
SOURCE # 50	TSFHT	85300	37500	620	13057
SOURCE # 51	TSFDZ	85250	37450	620	13099

PROJECTED OCTAVE	OCTAVE 31.5		125	250	500	1000	2κ	4K	8000
16K LINEAR O	58	53	52	53	21	14	0	0	0
A-wt -7	18	27	36	44	18	14	1	1	-2
n'									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 4 - 1M-4 -

CONTRIBUTOR	SPL	DBA			REF. DISTAN	
SOURCE # 1 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 6 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 18 SOURCE # 22 SOURCE # 25 SOURCE # 27 SOURCE # 27 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 33 SOURCE # 33 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38	DB(Lin) DBA 47 23 46 23 46 23 39 19 39 19 39 19 39 19 39 19 39 19 39 19 39 19 39 19 39 19 39 19 39 39 19 39 39 19 39 39 39 39 39 39 39 39 39 39 39 39 39	SPHERE 69 69 59 59 59 59 59 59 59 59 59 59 59 59 59	PATH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATMOS. 2220000033333352222224111122222222311
SOURCE # 32 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38	37 20 37 20 37 20 37 20 37 20 37 20 51 38 37 21	62 62 62 62 62 70 71	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	3 1
SOURCE # 40 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 46 SOURCE # 47 SOURCE # 48	38 21 37 21 37 21 42 24 42 24 42 24 40 23 40 23	71 71 71 68 68 68 70 70	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1

			OneMile	Results.TX	T		
SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	40 33 33 0	23 19 19 0	70 63 63	0 0 0	0 0 0	0 0 0	1 3 3
TOTAL wo bkg TOTAL w bkg	59 59	44 44					
TEMPERATURE 15	C	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	3

		v	V	7	DST
DECETVED # A	1M-4	X 75643	Y 52933	2 527	וכט
RECEIVER # 4 SOURCE # 1		73043 79767	41378	548	12268
	Primary Crusher	80714	41311	556	12679
SOURCE # 2 SOURCE # 3	SAG Mill	80812	41287	556	12741
	Ball Mill	80996	41228	559	12871
SOURCE # 4 SOURCE # 5	Regrind Mill 1 Regrind Mill 2	81013	41223	559	12882
		81031	41219	559	12893
		80991	41219	559	12887
SOURCE # 7 SOURCE # 8		81008	41206	559	12897
		81026	41199	559	12909
SOURCE # 9 SOURCE # 10	<u> </u>	71900	35000	680	18320
SOURCE # 10	ROSAHT 1 ROSAHT 2	71850	34950	680	18379
SOURCE # 11	ROSAHT 3	71800	34900	680	18438
SOURCE # 12	ROSADZ 1	71750	34850	680	18497
SOURCE # 13	ROSADZ 2	71700	34800	680	18557
SOURCE # 14	ROSADZ Z ROSADZ 3	71650	34750	680	18616
SOURCE # 15	ROSA BUA	71910	35010	675	18308
SOURCE # 17	JPHT 1	78200	39000	680	14166
SOURCE # 18	JPHT 2	78150	38950	680	14206
SOURCE # 19	JPHT 3	78100	38900	680	14247
SOURCE # 20	JPDZ 1	78050	38850	680	14288
SOURCE # 21	JPDZ 2	78000	38800	680	14329
SOURCE # 22	JPDZ3	78210	39010	680	14158
SOURCE # 23	JPBU	78210	39010	680	14158
SOURCE # 24	HOSAHT 1	77400	43400	720	9695
SOURCE # 25	HOSAHT 2	77350	43350	720	9735
SOURCE # 26	HOSAHT 3	77300	43300	720	9776
SOURCE # 27	HOSADZ 1	77250	43250	720	9817
SOURCE # 28	HOSADZ 2	77200	43200	720	9858
SOURCE # 29	HOSADZ 3	77150	43150	720	9900
SOURCE # 30	HOSABU	77410	43410	720	9687
SOURCE # 31	JOSAHT 1	80600	43700	630	10480
SOURCE # 32	JOSAHT 2	80550	43650	630	10500
SOURCE # 33	JOSAHT 3	80500	43600	630	10521
SOURCE # 34	JOSADZ 1	80450	43550	630	10543
SOURCE # 35	JOSADZ 2	80400	43500	630	10565
SOURCE # 36	JOSADZ 3	80350	43450	630	10587
SOURCE # 37	JOSABU	80610	43710	630	10475
SOURCE # 38	CPDRILL 1	75500	33700	460	19233
SOURCE # 39	CPDRILL 2	75450	33650	460	19284
SOURCE # 40	CPDRILL 3	75400	33600	460	19334
SOURCE # 41	SPORILL 1	74000	34800	480	18207
SOURCE # 42	SPDRILL 2	73950	34750 34700	480 480	18261 18316
SOURCE # 43	SPDRILL 3	73900 75600		480 420	10833
SOURCE # 44 SOURCE # 45	SKPDRILL 1 SKPDRILL 2	75550 75550	42100 42050	420 420	10883
SOURCE # 45 SOURCE # 46	SKPDRILL 2	75500	42000	420	10934
SOURCE # 46 SOURCE # 47	LPDRILL 1	76900	39600	440	13392
SOURCE # 47	LPDRILL 2	76850	39550	440	13437
300RCL # 40	LI DITTLE L	70030	22330	, , , ,	, , , ,

76800 39500 85300 37500 85250 37450 440 620 620 SOURCE # 49 LPDRILL 3 SOURCE # 50 TSFHT SOURCE # 51 TSFDZ 13483 18205 18221

PROJECTED OCTAVE	OCTAVE 31.5		125	250	500	1000	2K	4K	8000
16K LINEAR	56	52	50	51	18	9	0	0	0
A-wt -7	17	26	34	42	15	9	1	1	-2
п									

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 5 - 1M-5 -

CONTRIBUTOR	SPL			ATION FROM	REF. DISTAN	
SOURCE # 1 2 SOURCE # 3 SOURCE # 4 SOURCE # 6 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 14 SOURCE # 15 SOURCE # 15 SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 18 SOURCE # 22 SOURCE # 25 SOURCE # 26 SOURCE # 27 SOURCE # 30 SOURCE # 31 SOURCE # 32 SOURCE # 32 SOURCE # 33 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 37 SOURCE #	DB(Lin) DBA 47 23 46 23 46 23 38 19 38 19 38 19 38 19 38 19 38 20 38 20 38 20 38 38 20 38 20 37 20 37 20 37 20 37 37 20 37 37 37 37 37 37 37 37 37 37 37 37 37	SPHERE 690 700 599 999 555 566 666 666 666 667 669 668 668 668 668 668 668 668 668 668	PATH 000000000000000000000000000000000000	/1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATMOS. 22200000111111222222311111122222311111
SOURCE # 41 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45	43 24 43 24 43 24 45 26 45 26	68 68 68 66 66	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 0 0

			OneMileRe	esults.TX	T		
SOURCE # 46	45	26	66	0	0	0	0
SOURCE # 47	43	25	68	0	0	0	1
SOURCE # 48	43	25	68	0	0	0	1
SOURCE # 49	43	25	68	0	0	0	1
SOURCE # 50	33	19	63	0	0	0	3
SOURCE # 51	33	19	63	0	0	0	3
BACKGROUND	0	0					
0							
TOTAL wo bkg	60	45					
TOTAL w bkg	60	45					
TEMPERATURE 15	C	58 F	RELATIVE H	UMIDITY	70 %	REF. DISTAN	CE

3

		X	Υ	Z	DST
RECEIVER # 5	1M-5	67908	43323	525	
SOURCE # 1	Primary Crusher	79767	41378	548	12017
		80714	41311	556	12963
SOURCE # 2	SAG_Mill				
SOURCE # 3	Ball Mill	80812	41287	556	13064
SOURCE # 4	Regrind Mill 1	80996	41228	559	13254
SOURCE # 5	Regrind Mill 2	81013	41223	559	13272
SOURCE # 6	Regrind Mill 3	81031	41219	559	13290
				223	T3530
SOURCE # 7	Regrind Mill 4	80991	41208	559	13252
SOURCE # 8	Regrind Mill 5	81008	41204	559	13270
SOURCE # 9	Regrind Mill 6	81026	41199	559	13288
SOURCE # 10	ROŠAHT 1	71900	35000	680	9232
SOURCE # 11	ROSAHT 2	71850	34950	680	9255
		71800	34900	680	9280
	ROSAHT 3	71000			
SOURCE # 13	ROSADZ 1	71750	34850	680	9304
SOURCE # 14	ROSADZ 2	71700	34800	680	9329
SOURCE # 15	ROSADZ 3	71650	34750	680	9355
SOURCE # 16	ROSA BUA	71910	35010	675	9227
SOURCE # 17	JPHT 1	78200	39000	680	11164
		70200			
SOURCE # 18	ЈРНТ <u>2</u>	78150	38950	680	11137
SOURCE # 19	ЈРНТ 3	78100	38900	680	11111
SOURCE # 20	JPDZ 1	78050	38850	680	11085
SOURCE # 21	JPDZ 2	78000	38800	680	11060
SOURCE # 22	JPDZ3	78210	39010	680	11169
SOURCE # 22		78210	39010	680	11169
	JPBU			720	
SOURCE # 24	HOSAHT 1	77400	43400	720	9494
SOURCE # 25	HOSAHT 2	77350	43350	720	9444
SOURCE # 26	HOSAHT 3	77300	43300	720	9394
SOURCE # 27	HOSADZ 1	77250	43250	720	9344
SOURCE # 28	HOSADZ 2	77200	43200	720	9294
SOURCE # 29	HOSADZ 3	77150	43150	720	9245
		77110		720	
SOURCE # 30	HOSABU	77410	43410	720	9504
SOURCE # 31	JOSAHT 1	80600	43700	630	12698
SOURCE # 32	JOSAHT 2	80550	43650	630	12646
SOURCE # 33	JOSAHT 3	80500	43600	630	12595
SOURCE # 34	JOSADZ 1	80450	43550	630	12544
SOURCE # 35	JOSADZ 2	80400	43500	630	12493
SOURCE # 36	JOSADZ 3	80350	43450	630	12443
SOURCE # 37	JOSABU	80610	43710	630	12708
SOURCE # 38	CPDRILL 1	75500	33700	460	12257
SOURCE # 39	CPDRILL 2	75450	33650	460	12265
SOURCE # 40	CPDRILL 3	75400	33600	460	12274
SOURCE # 41	SPDRILL 1	74000	34800	480	10476
300RCE # 41				480	
SOURCE # 42	SPDRILL 2	73950	34750		10488
SOURCE # 43	SPDRILL 3	73900	34700	480	10500
SOURCE # 44	SKPDRILL 1	75600	42100	420	7789
SOURCE # 45	SKPDRILL 2	75550	42050	420	7748

SOURCE # SOURCE # SOURCE # SOURCE # SOURCE #	# 47 # 48 # 49 # 50	SKPDRILL LPDRILL 1 LPDRILL 2 LPDRILL 3 TSFHT TSFDZ	•	OneMileR		s.TXT 75500 76900 76850 76800 35300 35250	42000 39600 39550 39500 37500 37450	420 440 440 440 620 620	7707 9732 9705 9679 18341 18309
PROJECTED OCTAVE	OCTAV 31.5		125	250	500	10	00 2κ	4K	8000
16K LINEAR	57	54	53	52	20	1.	2 0	0	0
0 A-wt -7 □	18	28	37	44	17	1	2 1	1	-2

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 6 - 1M-6 -

CONTRIBUTOR SPL DB(Lin) DBA	•		ATION FROM		CE ATMOS.
CONTRIBUTOR DB(Lin) DBA	DBA SPHERE 771 771 759 559 559 562 662 663 663 663 663 663 663 663 663 6	PATH 00 00 00 00 00 00 00 00 00 00 00 00 00	ATION FROM /1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF. DISTAN BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SOURCE # 41 42 24 SOURCE # 42 42 24	68 68	0 0	0 0	0 0	1 1

Page 11

OneMileResults.TX	ΧT		
68 0	0	0	1
70 0	0	0	1
70 0	0	0	1
70 0	0	0	1
70 0	0	0	1
70 0	0	0	1
70 0	0	0	1
63 0	0	0	3
63 0	0	0	3
RELATIVE HUMIDITY	70 %	REF. DISTANCE	3
	68 0 70 0 70 0 70 0 70 0 70 0 70 0	68 0 0 0 70 70 0 0 70 70 0 0 70 70 70 70 7	68 0 0 0 0 0 70 0 70 0 70 0 0 0 70 0 0 70 0 0 70 0 70 0 70 0 70 0 0 70 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

		X	Y	Z	DST
RECEIVER # 6 SOURCE # 1	1M-6 Primary Crusher	63305 79767	34813 41378	500 548	17722
SOURCE # 1 SOURCE # 2 SOURCE # 3	SAG Mill	80714	41311	556	18583
SOURCE # 3	Ball Mill	80812	41287	556	18666
SOURCE # 4	Regrind Mill 1 Regrind Mill 2	80996	41228	559	18818
SOURCE # 5 SOURCE # 6		81013 81031	41223 41219	559 559	18832 18848
SOURCE # 6 SOURCE # 7	Regrind Mill 3 Regrind Mill 4	80991	41219	559 559	18806
SOURCE # 8	Regrind Mill 5	81008	41204	559	18821
SOURCE # 9	Regrind Mill 6	81026	41199	559	18836
SOURCE # 10	ROŠAHT 1	71900	35000	680	8598
SOURCE # 11	ROSAHT 2	71850	34950	680	8548
SOURCE # 12 SOURCE # 13	ROSAHT 3	71800	34900 34850	680 680	8497 8447
SOURCE # 13 SOURCE # 14	ROSADZ 1 ROSADZ 2	71750 71700	34800	680	8396
SOURCE # 15	ROSADZ 3	71650	34750	680	8347
SOURCE # 16	ROSA BUA	71910	35010	675	8609
SOURCE # 17	JРНТ 1	78200	39000	680	15473
SOURCE # 18	JPHT 2	78150	38950	680	15411
SOURCE # 19	JPHT 3	78100 78050	38900 38850	680 680	15350 15288
SOURCE # 20 SOURCE # 21	JPDZ 1 JPDZ 2	78000	38800	680	15227
SOURCE # 21	JPDZ3	78210	39010	680	15485
SOURCE # 23	JPBU	78210	39010	680	15485
SOURCE # 24	HOSAHT 1	77400	43400	720	16506
SOURCE # 25	HOSAHT 2	77350	43350	720	16437
SOURCE # 26	HOSAHT 3	77300	43300	720 720	16368
SOURCE # 27 SOURCE # 28	HOSADZ 1 HOSADZ 2	77250 77200	43250 43200	720 720	16300 16231
SOURCE # 29	HOSADZ 3	77150	43150	720	16162
SOURCE # 30	HOSABU	77410	43410	720	16519
SOURCE # 31	JOSAHT 1	80600	43700	630	19445
SOURCE # 32	JOSAHT 2	80550	43650	630	19377
SOURCE # 33	JOSAHT 3	80500	43600	630 630	19310 19243
SOURCE # 34 SOURCE # 35	JOSADZ 1 JOSADZ 2	80450 80400	43550 43500	630	19243
SOURCE # 36	JOSADZ Z	80350	43450	630	19108
SOURCE # 37	JOSABU	80610	43710	630	19458
SOURCE # 38	CPDRILL 1	75500	33700	460	12245
SOURCE # 39	CPDRILL 2	75450	33650	460	12200
SOURCE # 40 SOURCE # 41	CPDRILL 3 SPDRILL 1	75400 74000	33600 34800	460 480	12155 10695
SOURCE # 41 SOURCE # 42	SPDRILL 1 SPDRILL 2	73950	34750	480	10645
	n-,,				

Page 12

				OneMileRe	sults	.TXT				
SOURCE #	# 43	SPDRILL 3			7:	3900	34700	480)	10595
SOURCE #	<i>‡</i> 44	SKPDRILL :	1		7.	5600	42100	420		14292
SOURCE #	<i>‡</i> 45	SKPDRILL :	2		75	5550	42050	420		14223
SOURCE #		SKPDRILL	3			5500	42000	420		14155
SOURCE #	• • •	LPDRILL 1				5900	39600	440		14413
SOURCE #		LPDRILL 2				5850	39550	440		14349
SOURCE #		LPDRILL 3				5800	39500	440		14285
SOURCE #		TSFHT				300	37500	620		22158
SOURCE #	<i>‡</i> 51	TSFDZ			85	5250	37450	620)	22103
PROJECTED	OCTA	/E LEVELS:								
OCTAVE	31.5	63	125	250	500	100	00 21	(4	łĸ	8000
16K										
LINEAR	55	52	50	50	17	Ş	9	0	0	0
0			_				_			_
A_wt	15	26	34	41	14	ć	€	1	1	2
- 7										
0										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 7-1M-7-

CONTRIBUTOR	SPL DB(Lin) DBA				REF. DISTAN	
SOURCE # 12 SOURCE # 3 SOURCE # 5 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 14 SOURCE # 15 SOURCE # 15 SOURCE # 15 SOURCE # 17 SOURCE # 18 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 24 SOURCE # 25 SOURCE # 27 SOURCE # 28 SOURCE # 30 SOURCE # 31 SOURCE # 33 SOURCE # 33 SOURCE # 34 SOURCE # 35 SOURCE # 35 SOURCE # 36	SPL DB(Lin) DBA 43 43 21 43 21 43 21 36 19 36 19 36 19 37 20 37 37 20 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 20 37 37 37 20 37 37 37 37 37 37 37 37 37 37 37 37 37	DBA SPHERE 71 71 71 59 59 59 62 62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	ATTENU PATH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATION FROM /1000 Ft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REF. DISTANDA BARRIERS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CE ATMOS. 33 111111222222222224333333333333333333
SOURCE # 37 SOURCE # 38 SOURCE # 39	44 29 43 25 44 25	75 68 67	0 0 0	0 0 0	0 0 0	6 1 1

Page 13

			OneMileR	lesults.TX	Т		
SOURCE # 40	44	25	67	0	0	0	1
SOURCE # 41	43	24	68	0	0	0	1
SOURCE # 42	43	24	68	0	0	0	1
SOURCE # 43	43	24	68	0	0	0	1
SOURCE # 44	38	22	71	0	0	0	1
SOURCE # 45	38	22	71	Ō	Ó	0	1
SOURCE # 46	38	22	71	Ó	0	0	1
SOURCE # 47	39	$\bar{2}\bar{2}$	70	Ŏ	Ō	Ó	1
SOURCE # 48	39	22	70	Ō	Ō	Ö	1
SOURCE # 49	39	22	70	Ō	Ö	0	1
SOURCE # 50	33	19	63	0	0	0	3
SOURCE # 51	33	19	63	0	0	0	3
BACKGROUND	0	Ó					
0							
TOTAL wo bkg	58	42					
TOTAL w bkg	58	42					
TEMPERATURE 1	5 C	58 F	RFLATTVF	HUMTDTTY	70 %	REF. DISTA	NCE :

		X	Υ	Z	DST
RECEIVER # 7	1M-7	72776	24562	500	
SOURCE # 1 SOURCE # 2	Primary Crusher	79767	41378	548	18211
SOURCE # 2	SAG Mill	80714	41311	556	18536
SOURCE # 3	Ball Mill	80812	41287	556	18556
SOURCE # 4	Regrind Mill 1	80996	41228	559	18582
SOURCE # 5	Rearind Mill 2	81013	41223	559	18586
SOURCE # 6	Regrind Mill 3	81031	41219	559	18590
SOURCE # 7	Regrind Mill 4	80991	41208	559	18562
SOURCE # 8	Regrind Mill 5	81008	41204	559	18566
SOURCE # 9	Regrind Mill 6	81026	41199	559	18570
SOURCE # 10	ROŠAHT 1	71900	35000	680	10476
SOURCE # 11	ROSAHT 2	71850	34950	680	10430
SOURCE # 12	ROSAHT 3	71800	34900	680	10385
SOURCE # 13	ROSADZ 1	71750	34850	680	10340
SOURCE # 14	ROSADZ 2	71700	34800	680	10295
SOURCE # 15	ROSADZ 3	71650	34750	680	10251
SOURCE # 16	ROSA BUA	71910	35010	675	10485
SOURCE # 17	JPHT 1	78200	39000	680	15424
SOURCE # 18	JPHT 2	78150	38950	680	15359
SOURCE # 19	JPHT 3	78100	38900	680	15295 15231
SOURCE # 20	JPDZ 1	78050 78000	38850 38800	680 680	15251
SOURCE # 21	JPDZ 2		39010	680	15437
SOURCE # 22 SOURCE # 23	JPDZ3	78210 78210	39010	680	15437
SOURCE # 23	JPBU HOSAHT 1	77400	43400	720	19398
SOURCE # 24	HOSAHT 1 HOSAHT 2	77400	43350	720	19338
SOURCE # 25	HOSAHT 3	77300	43300	720	19277
SOURCE # 20	HOSADZ 1	77250	43250	720	19217
SOURCE # 28	HOSADZ 2	77200	43200	720	19157
SOURCE # 29	HOSADZ 3	77150	43150	720	19096
SOURCE # 30	HOSABU	77410	43410	720	19410
SOURCE # 31	JOSAHT 1	80600	43700	630	20675
SOURCE # 32	JOSAHT 2	80550	43650	630	20610
SOURCE # 33	JOSAHT 3	80500	43600	630	20545
SOURCE # 34	JOSADZ 1	80450	43550	630	20480
SOURCE # 35	JOSADZ 2	80400	43500	630	20415
SOURCE # 36	JOSADZ 3	80350	43450	630	20350
SOURCE # 37	JOSABU	80610	43710	630	20689
SOURCE # 38	CPDRILL 1	75500	33700	460	9535
SOURCE # 39	CPDRILL 2	75450	33650	460	9473

Page 14

				OneMileRe	sults.	TXT				
SOURCE #	40	CPDRILL 3			75	400	33600		460	9411
SOURCE #	41	SPDRILL 1			74	-000	34800		480	10310
SOURCE #	42	SPDRILL 2			73	950	34750		480	10255
SOURCE #	43	SPDRILL 3			73	900	34700		480	10200
SOURCE #	44	SKPDRILL :	1		75	600	42100		420	17764
SOURCE #	45	SKPDRILL 2	2			550	42050		420	17706
SOURCE #	46	SKPDRILL :	3		75	500	42000		420	17649
SOURCE #	47	LPDRILL 1			76	900	39600		440	15593
SOURCE #	48	LPDRILL 2				850	39550		440	15531
SOURCE #	49	LPDRILL 3			76	800	39500		440	15470
SOURCE #	50	TSFHT			85	300	37500		620	18007
SOURCE #	51	TSFDZ			85	250	37450		620	17936
PROJECTED	0CTAV	E LEVELS:								
OCTAVE	31.5		125	250	500	100	00 2	′	4ĸ	8000
16K	31.3	0.5	14.5	230	300	100	20 2.		TIX	0000
LINEAR	54	52	50	48	15	(5	0	0	0
0										
A-Wt	15	26	34	39	12	(5	1	1	-2
-7										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 8 - 1M-8 -

CONTRIBUTOR	SPL				REF. DISTAN	
	DB(Lin) DBA	SPHERE	PATH	/1000 Ft	BARRIERS	ATMOS.
SOURCE # 1	43 21	71	0	0	0	3
SOURCE # 2	43 21	71	0	0	0	3
SOURCE # 3	43 21	71	0	0	0	3
SOURCE # 4	36 19	59	0	0	0	1
SOURCE # 5	36 19	59	0	0	0	1
SOURCE # 6	36 19	59	0	0	0	1.
SOURCE # 7	36 19	59	0	0	0	1
SOURCE # 8	36 19	59	0	0	0	1
SOURCE # 9	36 19	59	0	0	0	1
SOURCE # 10	32 19	63	0	0	0	3
SOURCE # 11	32 19	63	0	0	0	3
SOURCE # 12	32 19	63	0	0	0	1 3 3 3 3
SOURCE # 13	32 19	63	0	0	0	3
SOURCE # 14	32 19	63	0	Ō	Ō	3
SOURCE # 15	32 19	63	Ō	Ō	0	3
SOURCE # 16	46 31	74	Ō	Ō	Õ	5
SOURCE # 17	33 19	63	Q .	Ō	<u>0</u>	3 3
SOURCE # 18	33 19	63	0	Ō	<u>0</u>	3
SOURCE # 19	33 19	63	0	0	0	3
SOURCE # 20	33 19	63	0	0	<u>0</u>	3 3 3 5
SOURCE # 21	33 19	63	0	0	0	3
SOURCE # 22	33 19	63	0	0	0	3
SOURCE # 23	47 32	74	0	0	Õ	5
SOURCE # 24	31 19	63	0	0	0	3
SOURCE # 25	31 19	63	0	0	0	3
SOURCE # 26	31 19	63	Ŏ	0	0	3 3 3 3 6
SOURCE # 27	31 19	63	0	0	0	3
SOURCE # 28	31 19	63	0	0	0	3
SOURCE # 29	31 19	63	Ŏ	0	0	3
SOURCE # 30	44 29	75 63	0	0	0	b
SOURCE # 31	32 19	63	Ŏ	0	0	3
SOURCE # 32	32 19	63	0	0	0	3
SOURCE # 33	32 19	63	0	0	Ü	3 3 3 3
SOURCE # 34 SOURCE # 35	32 19	63	0	0	0) 2
	32 19	63 63	0	0	0 0	3
SOURCE # 36	32 19	03	0	0	V	3

Page 15

			OneMile	Results.TX	т		
SOURCE # 37 SOURCE # 38 SOURCE # 39 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 46 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	4509988886668888660 3333333333333333333333333	30 22 22 22 22 22 21 21 21 22 22 22 19 19	75 70 70 70 71 71 71 71 71 71 71 71 63 63	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	5 1 1 1 1 2 2 2 1 1 1 2 2 2
TOTAL wo bkg TOTAL w bkg	56 56	40 40					
TEMPERATURE 15	C	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTANCE	3

		X	Υ	Z	DST
RECEIVER # 8	1M-8	87368	25036	525	10022
SOURCE # 1 SOURCE # 2	Primary Crusher	79767	41378	548 556	18023 17583
SOURCE # 2 SOURCE # 3	SAG Mill Ball Mill	80714 80812	41311 41287	556	17524
SOURCE # 3 SOURCE # 4		80996	41228	559	17400
SOURCE # 5	Regrind Mill 1 Regrind Mill 2	81013	41223	559	17389
SOURCE # 5 SOURCE # 6 SOURCE # 7	Regrind Mill 3	81031	41219	559	17379
SOURCE # 7	Regrind Mill 4	80991	41208	559	17383
SOURCE # 8	Regrind Mill 5	81008	41204	559	17374
SOURCE # 9	Regrind Mill 6	81026	41199	559	17362
SOURCE # 10	ROSAHT 1	71900	35000	680	18400
SOURCE # 11	ROSAHT 2	71850	34950	680	18415
SOURCE # 12	ROSAHT 3	71800	34900	680	18430
SOURCE # 13	ROSADZ 1	71750	34850	680	18446
SOURCE # 14	ROSADZ 2	71700	34800	680	18462
SOURCE # 15	ROSADZ 3	71650	34750	680 675	18478 18397
SOURCE # 16 SOURCE # 17	ROSA BUA	71910 78200	35010 39000	680	16705
SOURCE # 17	JPHT 1 JPHT 2	78200 78150	38950	680	16691
SOURCE # 19	JPHT 3	78100	38900	680	16677
SOURCE # 20	JPDZ 1	78050	38850	680	16663
SOURCE # 21	JPDZ 2	78000	38800	680	16650
SOURCE # 22	JPDZ3	78210	39010	680	16708
SOURCE # 23	JPBU	78210	39010	680	16708
SOURCE # 24	HOSAHT 1	77400	43400	720	20895
SOURCE # 25	HOSAHT 2	77350	43350	720	20875
SOURCE # 26	HOSAHT 3	77300	43300	720	20856
SOURCE # 27	HOSADZ 1	77250	43250	720	20836
SOURCE # 28	HOSADZ 2	77200	43200	720	20817
SOURCE # 29	HOSADZ 3	77150 77410	43150 43410	720 720	20798 20899
SOURCE # 30 SOURCE # 31	HOSABU JOSAHT 1	80600	43410	630	19853
SOURCE # 31	JOSAHT 2	80550	43650	630	19823
SOURCE # 33	JOSAHT 3	80500	43600	630	19794
SOURCE # 34	JOSADZ 1	80450	43550	630	19764
SOURCE # 35	JOSADZ 2	80400	43500	630	19735
SOURCE # 36	JOSADZ 3	80350	43450	630	19706

				OneMileR	esults.	TXT				
SOURCE	# 37	JOSABU			80	610	43710	630	1	.9859
SOURCE	# 38	CPDRILL 1			75	500	33700	460	1	.4694
SOURCE	# 39	CPDRILL 2			75	450	33650	460	1	.4705
SOURCE	# 40	CPDRILL 3			75	400	33600	460	1	4716
	# 41	SPDRILL 1			74	000	34800	480	1	.6554
SOURCE	# 42	SPDRILL 2			73	950	34750	480	1	.6565
SOURCE	# 43	SPDRILL 3			73	900	34700	480	1	.6576
SOURCE	# 44	SKPDRILL	1		75	600	42100	420	2	0728
SOURCE	# 45	SKPDRILL	2		75	550	42050	420	2	0716
SOURCE	# 46	SKPDRILL	3		75	500	42000	420	2	0703
SOURCE	# 47	LPDRILL 1			76	900	39600	440	1	.7935
SOURCE	# 48	LPDRILL 2			76	850	39550	440		.7924
SOURCE	# 49	LPDRILL 3			76	800	39500	440		.7913
SOURCE	# 50	TSFHT				300	37500	620	1	.2634
SOURCE	# 51	TSFDZ			85	250	37450	620	1	.2593
PROJECTED	OCTA	VE LEVELS:								
OCTAVE	31.		125	250	500	100	00 2k	. 4k	(8000
16K										
LINEAR	53	49	47	44	10	()	0	0	0
0										
A-wt	13	23	31	36	7	()	1	1	-2
-7										

GEOSONICS SOUND-CALC SOUND PROJECTIONS AT RECEIVER # 9 - 1M-9 -

SOURCE # 1 43 21 71 0 0 0 SOURCE # 2 43 21 71 0 0 0 SOURCE # 3 44 21 71 0 0 0	ONTRIBUTOR	CONTRIBUTOR		ATTENUATION FROM		١
SOURCE # 5 36 19 59 0 0 0 0 1 SOURCE # 6 36 19 59 0 0 0 0 1 SOURCE # 7 36 19 59 0 0 0 0 1 SOURCE # 8 36 19 59 0 0 0 0 1 SOURCE # 8 36 19 59 0 0 0 0 1 SOURCE # 9 36 19 59 0 0 0 0 1 SOURCE # 10 30 19 63 0 0 0 0 3 SOURCE # 11 30 19 63 0 0 0 0 3 SOURCE # 12 30 19 63 0 0 0 0 3 SOURCE # 13 30 19 63 0 0 0 0 3 SOURCE # 14 30 19 63 0 0 0 0 3 SOURCE # 15 30 19 63 0 0 0 0 3 SOURCE # 15 30 19 63 0 0 0 0 3 SOURCE # 15 30 19 63 0 0 0 0 3 SOURCE # 16 43 28 76 0 0 0 0 3 SOURCE # 17 32 19 63 0 0 0 0 3 SOURCE # 18 32 19 63 0 0 0 0 3 SOURCE # 18 32 19 63 0 0 0 0 3 SOURCE # 19 32 19 63 0 0 0 0 3 SOURCE # 19 32 19 63 0 0 0 0 3 SOURCE # 20 32 19 63 0 0 0 0 3 SOURCE # 21 32 19 63 0 0 0 0 3 SOURCE # 22 32 19 63 0 0 0 0 3 SOURCE # 23 46 31 74 0 0 0 0 3 SOURCE # 24 31 19 63 0 0 0 0 3 SOURCE # 25 31 19 63 0 0 0 0 3 SOURCE # 26 31 19 63 0 0 0 0 3 SOURCE # 27 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 28 31 19 63 0 0 0 0 3 SOURCE # 33 32 19 63 0 0 0 0 3 SOURCE # 33 32 19 63 0 0 0 0 0 3 SOURCE # 33 32 19 63 0 0 0 0 0 3 SOURCE # 33 32 19 63 0 0 0 0 0 3 SOURCE # 33 32 19 63 0 0 0 0 0 3	SOURCE # 1 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 14 SOURCE # 15 SOURCE # 16 SOURCE # 17 SOURCE # 17 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 22 SOURCE # 22 SOURCE # 23 SOURCE # 25 SOURCE # 25 SOURCE # 26 SOURCE # 27 SOURCE # 28 SOURCE # 28 SOURCE # 28 SOURCE # 30 SOURCE # 31 SOURCE # 32	SOURCE # 1 SOURCE # 3 SOURCE # 3 SOURCE # 4 SOURCE # 5 SOURCE # 6 SOURCE # 7 SOURCE # 10 SOURCE # 11 SOURCE # 11 SOURCE # 12 SOURCE # 12 SOURCE # 15 SOURCE # 15 SOURCE # 17 SOURCE # 17 SOURCE # 17 SOURCE # 18 SOURCE # 20 SOURCE # 21 SOURCE # 22 SOURCE # 25 SOURCE # 27 SOURCE # 27 SOURCE # 27 SOURCE # 28 SOURCE # 29 SOURCE # 30 SOURCE # 31 SOURCE # 31 SOURCE # 32	DB(Lin) DBA	PATH /1000 Ft 0	BARRIERS 0 3 3 0 3 3 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0	1 5 .

Page 17

SOURCE # 34 SOURCE # 35 SOURCE # 36 SOURCE # 37 SOURCE # 38 SOURCE # 40 SOURCE # 41 SOURCE # 42 SOURCE # 43 SOURCE # 44 SOURCE # 45 SOURCE # 45 SOURCE # 46 SOURCE # 47 SOURCE # 48 SOURCE # 49 SOURCE # 50 SOURCE # 51 BACKGROUND	32 32 32 43 37 33 33 33 33 33 33 37 37 37 37 37 37	19 19 31 21 21 21 21 21 21 21 21 21 20 20	OneMileR 63 63 63 75 71 71 71 71 72 72 72 72 71 71 62 62	Results.TX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	333522222222222222222222222222222222222
	Ū	Ü					
TOTAL wo bkg TOTAL w bkg	55 55	39 39					
TEMPERATURE 15	С	58 F	RELATIVE	HUMIDITY	70 %	REF. DISTA	NCE 3

	d 0	X	Υ	Z	DST
RECEIVER # 9 SOURCE # 1	1M-9	94826 79767	30997 41378	525 548	18290
SOURCE # 1 SOURCE # 2	Primary Crusher SAG Mill	80714	41311	556	17479
SOURCE # 2 SOURCE # 3	Ball Mill	80812	41287	556	17386
SOURCE # 4	Regrind Mill 1	80996	41228	559	17203
SOURCE # 5	Regrind Mill 2	81013	41223	559	17186
SOURCE # 6	Rearind Mill 3	81031	41219	559	17169
SOURCE # 7	Regrind Mill 4	80991	41208	559	17195
SOURCE # 8	Regrind Mill 5	81008	41204	559	17179
SOURCE # 9	Regrind Mill 6	81026	41199	559	17161
SOURCE # 10	ROSAHT 1	71900	35000	680	23273
SOURCE # 11	ROSAHT 2	71850	34950	680	23314 23354
SOURCE # 12 SOURCE # 13	ROSAHT 3	71800 71750	34900 34850	680 680	23395
SOURCE # 13 SOURCE # 14	ROSADZ 1 ROSADZ 2	71700	34800	680	23437
SOURCE # 14	ROSADZ Z ROSADZ 3	71650	34750	680	23478
SOURCE # 16	ROSA BUA	71910	35010	675	23265
SOURCE # 17	JPHT 1	78200	39000	680	18452
SOURCE # 18	JPHT 2	78150	38950	680	18476
SOURCE # 19	ЭРНТ 3	78100	38900	680	18499
SOURCE # 20	JPDZ 1	78050	38850	680	18523
SOURCE # 21	JPDZ_2	78000	38800	680	18547
SOURCE # 22	JPDZ3	78210	39010	680	18447
SOURCE # 23	JPBU	78210	39010	680	18447
SOURCE # 24	HOSAHT 1	77400	43400 43350	720	21390 21401
SOURCE # 25 SOURCE # 26	HOSAHT 2 HOSAHT 3	77350 77300	43300	720 720	21414
SOURCE # 20	HOSADZ 1	77250	43250	720	21426
SOURCE # 27	HOSADZ 2	77200	43200	720	21438
SOURCE # 29	HOSADZ 3	77150	43150	720	21451
SOURCE # 30	HOSABU	77410	43410	720	21387
SOURCE # 31	JOSAHT 1.	80600	43700	630	19072
SOURCE # 32	JOSAHT 2	80550	43650	630	19076
SOURCE # 33	JOSAHT 3	80500	43600	630	19080

Page 18

				OneMile	Results.	TXT				
SOURCE :		JOSADZ 1			80	450 4	3550	630	19085	
SOURCE :		JOSADZ 2			80	400 4	3500	630	19090	
SOURCE :		JOSADZ 3		80350 43450 630 1909						
SOURCE i		JOSABU		80610 43710 630 1907						
SOURCE i		CPDRILL 3					3700	460	19514	
SOURCE #			2				3650	460	19556	
SOURCE #		CPDRILL :	-				3600	460	19599	
SOURCE #		D 1 1 1 1 1 1 1 1 1 1	L				4800	480	21170	
SOURCE #			2				4750	480	21210	
SOURCE #		SPDRILL :					4700	480	21251	
SOURCE #		SKPDRILL	-				2100	420	22201	
SOURCE #		SKPDRILL					2050	420	22220	
SOURCE #		SKPDRILL	_				2000	420	22238	
SOURCE #		LPDRILL 3	T				9600 9550	440 440	19883 19907	
SOURCE #		LPDRILL :	_				9500	440	19931	
SOURCE #		TSFHT)				7500	620	11534	
SOURCE #		TSFDZ					7450	620	11547	
JOOKCE 7	, JT	13 FDZ			0,5	230 3	7430	020	エエンマノ	
PROJECTED	OCTA	VE LEVELS								
OCTAVE	31.		125	250	500	1000	2K	4K	8000	
16K	J				500	2000		***		
LINEAR	52	48	46	43	8	0	0	0	0	
0				- -	-	_	_	_	_	
A-wt	13	22	30	35	5	0	1	1	-2	
-7										